Выбрать главу

Наконец, буквально через несколько лет вступит в строй флагман субмиллиметровой и миллиметровой астрономии — интерферометрическая система ALMA (Европейская Южная обсерватория). Эта система из 50 антенн позволит получать изображения не только рождающихся звёзд, но и рождающихся планет, а также обнаруживать спектральные линии, на несколько порядков более слабые, чем можно наблюдать сейчас.

Несколько хуже обстоят дела с моделями. Собственно говоря, с самими моделями особых проблем нет — быстродействие современных компьютеров позволяет легко моделировать одновременное течение многих тысяч реакций, связывающих между собой сотни различных видов молекул (а также атомов и ионов). Но вот параметры многих из этих реакций известны пока крайне плохо, если вообще известны. Поэтому основные усилия в этом направлении сосредоточены на воспроизведении наиболее плохо исследованных реакций в лабораторных условиях. Сделать это очень непросто, поскольку «плотный» межзвёздный газ на самом деле существенно более разрежен, чем лучший лабораторный вакуум.

Но это проблемы практического характера. Основной же фундаментальный вопрос, который стоит сейчас перед астрохимией, заключается в том, насколько далеко может заходить синтез сложных молекул в молекулярных облаках. Ответ на него имеет прямое отношение к проблеме происхождения жизни на Земле: не исключено, что придумывать механизмы синтеза сложных пред-органических соединений на Земле не нужно, поскольку они присутствовали в Солнечной системе изначально. Чёткого ответа на этот вопрос нет. Из открытых на сегодняшний день межзвёздных органических молекул большая часть обнаружена в единственном объекте — гигантском молекулярном облаке Sgr B2(N), расположенном неподалёку от центра Галактики. Пока неясно, является ли его богатый химический состав отражением какой-то специфики этого объекта или же на определённом эволюционном этапе подобное разнообразие свойственно всем молекулярным облакам.

Иллюстрации:

Сборка космического субмиллиметрового телескопа «Гершель». Наблюдения в этом диапазоне (0,5–1 мм) осложняются высокими требованиями к качеству поверхности зеркала, поэтому наземные субмиллиметровые телескопы можно пока пересчитать по пальцам. В космос же телескоп этого диапазона с таким большим зеркалом отправился впервые.

Так выглядит гигантское молекулярное облако Sgr B2(N) при наблюдениях на длине волны 1,3 см. Этот снимок получен при помощи радиоинтерферометра VLA (США). Показанная на нём область имеет около одного парсека в поперечнике.

Глобула B68, в отличие от других подобных сгустков, расположена в относительной изоляции, поэтому она хорошо выделяется на звёздном фоне. При наблюдениях в оптическом диапазоне она выглядит чёрным пятном, поскольку сама глобула в нём не излучает, а свет фоновых звёзд полностью поглощается межзвёздной пылью, входящей в состав глобулы. Однако в линиях радиоизлучения молекул CO, CS и N2H+ глобула светится очень ярко, что позволяет изучать детали распределения вещества в ней.

Так выглядит Млечный Путь в излучении молекулы оксида углерода. Считается, что эта молекула хорошо перемешана с молекулярным водородом и потому может использоваться в качестве основного индикатора расположения молекулярных облаков.

К оглавлению