«Мне трудно понять, с какой силой надо сжимать искусственные пальцы. Когда я беру товар в магазине с полки, то нередко роняю его. Дома тарелки выскальзывают и бьются. Вместо того чтобы взять фрукт, я могу смять его. Если бы мой протез позволял чувствовать, я был бы очень рад этому и просто брал бы им любые предметы не задумываясь».
Группа исследователей из двух университетов провела серию экспериментов, в которых смогла добиться передачи электрических сигналов от группы датчиков непосредственно в сенсорную область коры больших полушарий у макак-резусов. Более того, лабораторные животные смогли успешно интерпретировать эти сигналы как тактильные ощущения от различных частей руки. Для этого импульсы направлялись к разным участкам сенсорной зоны.
В другом исследовании группа макак подобным образом успешно определяла силу давления. Разумеется, мы не знаем наверняка, что чувствовали обезьяны. Однако по их поведению мы можем довольно уверенно судить о том, что в эти моменты они ощущали аналоги прикосновений.
Пока это лишь первые шаги на пути к созданию протеза с тактильной обратной связью. На данном этапе существует проблема со скоростью передачи сенсорных импульсов в мозг. Задержка ещё слишком велика, чтобы говорить о взаимодействии в реальном времени.
Сначала происходит касание, затем обрабатывается информация от датчиков. На её основании кодируется и передаётся в мозг электрический сигнал, распознаваемый как тактильное ощущение. На каждом этапе тратятся доли секунды, но в результате реакция в целом выглядит заторможенной. Исследователи ищут способы уменьшить латентность системы.
В случае удачи созданный в Университете Джонса Хопкинса протез станет самым чувствительным среди всех аналогичных разработок. На нём разместят более сотни датчиков давления и температуры. Их количество кажется внушительным, если не сравнивать с кожей. Всего в ней содержится около 4 млн различных рецепторов, а их плотность измеряется десятками и сотнями на квадратный сантиметр.
Чтобы хоть как-то приблизить искусственную руку к такой чувствительности, практически все датчики будут расположены на ладонной поверхности кисти.
Биомедицинский инженер Роберт Кирш (Robert Kirsch), работающий в частном Кливлендском университете, высоко оценил важность разработки протезов с функцией осязания на страницах издания Nature:
«Вероятно, это следующая большая революция, которая должна произойти».
До сих пор исследователям удавалось считывать только общую и сильно упрощённую картину мозговой активности. Теперь перед ними стоит ещё более сложная задача — научиться передавать информацию о внешнем мире непосредственно в мозг, кодируя её в виде электрических сигналов.
Привычные тактильные ощущения только кажутся простыми по своей природе. В их основе всегда лежит сложный процесс наложения сигналов от разных рецепторов в коже, мышцах и сухожилиях. Только реагируя вместе, они вызывают характерное чувство. Просто коснувшись любой поверхности, вы сразу можете описать её как твёрдую или мягкую, гладкую или шероховатую, тёплую или холодную, сухую или влажную. Для бионики будет прорывом, если протез сможет передавать хотя бы часть ощущений.
Перед запуском в производство такого протеза его создателям предстоит гораздо более долгий путь согласования с федеральными контролирующими органами в сфере здравоохранения, чем это принято для обычных новых моделей. Впервые протез руки потребует вмешательства нейрохирурга для имплантации электродов в мозг пациента.
Прежде чем начнётся этап клинических исследований с участием добровольцев среди людей, должна пройти ещё не одна серия экспериментов на лабораторных животных. Как и в любом инвазивном методе, есть риск травмы, развития инфекций и неучтённых отдалённых последствий.
Как отдельная проблема указывается калибровка системы. Электрические сигналы от протеза наверняка будут более грубыми раздражителями, чем естественные тактильные ощущения. Для каждого пациента придётся подбирать пороговые уровни и характеристики сигналов, чтобы они достоверно различались, а также не воспринимались как болевые или неприятные.