В 2010 году Юрген Штайнакер и его коллеги продвинулись ещё дальше — дальше в инфракрасный диапазон. Они использовали для наблюдений космический телескоп «Спитцер» и обнаружили пепельный свет межзвёздной пыли уже на длинах волн до 4,5 микрон. Поскольку в этом диапазоне пыль ещё более прозрачна, рассеянное ею излучение несёт информацию из более сконденсированных частей межзвёздных облаков. Плотные газопылевые сгустки в этих облаках называются ядрами, и потому Штайнакер с коллегами предложили для звёздного инфракрасного света, отражённого пылью в ядрах, термин «coreshine».
Пепельный свет удобен в качестве инструмента для изучения межзвёздных облаков и ядер по нескольким причинам. Во-первых, он высвечивает структуру облака везде, а не только там, где есть фоновые звёзды. Во-вторых, он, в отличие от собственного излучения пыли, может наблюдаться с весьма приличным угловым разрешением и притом с поверхности Земли. В-третьих, интерпретация любых подобных наблюдений требует некоторых предположений о природе пылинок. Так вот, чтобы вытащить информацию из наблюдений рассеянного излучения, таких предположений требуется сделать меньше, чем при анализе наблюдений собственного излучения.
Впрочем, есть одно предположение о природе пылинок, без которого разобраться в рассеянном пепельном свете облаков невозможно. И именно оно привлекает к пепельному свету максимум интереса: это предположение о размере пылинки. Дело в том, что она наиболее эффективно поглощает и рассеивает излучение, длина волны которого не превосходит размера пылинки. Именно поэтому пыль становится прозрачнее в длинноволновом инфракрасном диапазоне. Способность пыли в ядрах межзвёздных облаков рассеивать излучение с длиной волны около 4–5 микрон означает, что и сами пылинки (по крайней мере самые крупные из них) имеют примерно такой размер. Но для пыли вне облаков уже давно установлено верхнее ограничение по размерам в десятые доли микрона, то есть на порядок меньше.
Таким образом, существование пепельного света облаков говорит о том, что пылинки в них раз в десять превосходят по размерам таковые в «обычной» (не облачной) межзвёздной среде. Иными словами, попав в облако, пылинки начинают расти. А рост пылинок — это первый шаг к образованию планет. Нет, никто, конечно, не предполагает, что в облаках могут сами по себе конденсироваться планеты: при невысокой облачной плотности этот процесс занял бы слишком много времени. Собственно говоря, даже с микронными пылинками возникают определённые проблемы: чтобы вырасти до таких размеров, пылинке требуется десяток миллионов лет, а межзвёздные облака (по современным оценкам) живут примерно половину этого срока. Поэтому обнаружение крупных пылинок привело к некоторому оживлению в стане сторонников медленной модели звездообразования, считающих, что
Так или иначе, крупные пылинки в облаках есть, а это означает, что рост пылинок в протопланетных дисках, заканчивающийся формированием планет, начинается не с нуля. Первые шаги в этом направлении пыль делает ещё в родительском облаке, когда ни звёзды, ни протопланетные диски вокруг них ещё не образовались. Или даже раньше?
И ещё о цвете кожи: почему мы белые и почему мы загораем
Дмитрий Шабанов
Опубликовано 21 октября 2013
В прошлой колонке мы установили, почему кожа коренного населения Африки (континента, где возник наш вид), имеет более или менее чёрный цвет. Хотя потребности терморегуляции должны были способствовать осветлению кожи африканцев, действие этого фактора было преодолено ещё более мощным вектором отбора — необходимостью уменьшить вероятность возникновения опухолей.
Соматический мутагенез, который может стать причиной злокачественных опухолей, — не единственный неблагоприятный эффект УФ-лучей. Кроме прочего, ультрафиолет разрушает находящуюся в коже фолиевую кислоту — один из витаминов, важный регулятор нашей репродуктивной активности. Длительное пребывание на солнце снижает человеческую фертильность, но повышенное содержание в коже меланина уменьшает этот эффект. Кстати, недостаточность фолиевой кислоты — самый распространённый вид витаминной недостаточности.