В гомологичной рекомбинации у бактерий можно видеть один из этапов становления той формы гомологичной рекомбинации, которая характерна для эукариот. Я говорю о половом размножении.
Строго говоря, половой процесс совсем не обязательно связан с размножением. И у кишечной палочки, и, к примеру, у инфузорий (эукариотических организмов) половой процесс протекает сам по себе, а размножение — вроде бы само по себе. Но всё-таки самым характерным для эукариот оказывается Когда-тогапло-диплоидный жизненный цикл с оплодотворением и мейозом. Надо объяснять. я это уже делал, но сейчас повторю ещё раз, иначе (можете для лучшей понятности сравнить два объяснения).
Начнём вот с чего. В зависимости от количества комплектов генетической информации (хромосомных наборов), содержащихся в ядре, эукариотические клетки делятся на гаплоидные (один комплект), диплоидные (два хромосомных набора) и ещё целый ряд иных типов, которые для нас сейчас не важны. Есть два главных типа деления клеток эукариот. При митозе количество генетической информации не изменяется, образуется две клетки, генетически идентичные и друг другу, и материнской клетке. При мейозе (который, по сути, состоит из двух делений, напоминающих митоз, но не предусматривающих удвоение генетической информации между ними) получается четыре клетки со вдвое уменьшенным количеством генетической информации. Все эти клетки генетически уникальны, потому что между гомологичными парами хромосом происходит гомологичная рекомбинация.
Если мейоз снижает количество хромосом вдвое, то в жизненном цикле, где он есть, должно происходить что-то, компенсирующее их нормальное количество. Это оплодотворение, слияние двух клеток, которое состоит из двух этапов — сингамии (слияния цитоплазм) и кариогамии (слияния ядер).
На нарисованной мной схеме митозы показаны только на диплоидной фазе, как это обычно бывает у высокоорганизованных животных, и людей в том числе. Это не единственное решение. Есть виды, у которых митозы и рост организма происходят на гаплоидной фазе, а диплоидная оказывается совсем короткой (сразу после оплодотворения зигота делится с помощью мейоза). У большинства растений рост происходит на обоих фазах. У мхов преобладает гаплоидная фаза, а, к примеру, у цветковых — диплоидная.
Теперь понятно? И, конечно, самое интересное, как у высокоорганизованных эукариот мог возникнуть такой сложный жизненный цикл. Его разные этапы возникали по отдельности, и до сих пор по отдельности наблюдаются у некоторых протистов и грибов. Свои (весьма непростые) механизмы обеспечивают у некоторых эукариот сингамию (например, срастание отдельных грибных нитей). Известно немало многоядерных эукариот; у некоторых из них отмечена кариогамия. Как я уже говорил, мейоз включает высокоорганизованный механизм гомологичной рекомбинации, более простые формы которой возникли ещё у прокариот. Есть весомые основания предполагать, что мейоз эволюционировал как форма восстановления, починки (репарации) генетического аппарата клетки — и лишь потом стал неотъемлемым этапом гаплоидно-диплоидного жизненного цикла.
Целый ряд авторитетов предполагает, что гаплоидно-диплоидный жизненный цикл с оплодотворением и мейозом возникал в ходе эволюции неоднократно! Об этом свидетельствует то, что интимные молекулярные механизмы, обеспечивающие эти существенные перестройки клеток, у разных групп оказываются разными. Дополнительным обстоятельством, поддерживающим это предположение, оказывается распространение сингамии, кариогамии и мейоза у различных групп протистов: во многих их типах эти феномены зарегистрированы у продвинутых представителей и отсутствуют у примитивных. Если это так, мы убеждаемся, что переход к такому жизненному циклу — закономерное событие в эволюции многих групп эукариот.
И вот теперь настало время задать вопрос, ради которого я писал эту колонку. Он касается уровня отбора, ответственного за появление полового размножения.