На мой взгляд, делать квантовый компьютер на кремнии — задача тяжелая. Она хороша только тем, что технология, как вы видите, отработана настолько, что уже можно размещать на поверхности отдельные атомы. Проблема — избавиться от их перемещения при отжиге. С этим пока не научились справляться.
Более того, для того, чтобы квантовый компьютер работал, надо чтобы атом фосфора или сурьмы оказался не на поверхности, а на глубине порядка 5 нм, это оптимальная глубина. Тогда свойства поверхности меньше всего повлияют на работу квантового кубита, и вы получите лучшие характеристики. Для того чтобы зарастить полученную структуру, нужна повышенная температура.
При этом примесные атомы опять начинают двигаться. Видимо, главной задачей исследователей в будущем станет точная фиксация атомов. То, что они достигли сейчас, позволяет контролировать, как расположены атомы примеси, и сравнивать результаты по проводимости с теоретическими расчетами.
Это означает, что у них есть концепция и все необходимые технологические приемы. Дальше надо экспериментировать и искать лучшие условия. Может быть, их способ окажется удачным. Возможно, более успешным окажется путь, по которому идут американцы из Национальной Лаборатории Сандия. Они внедряют имплантацией под поверхность отдельные атомы примеси, и потом проводят умеренный отжиг, чтобы сохранить их положение. Смещение атома не должно превышать +/- 2, 5 нанометра, тогда такой прибор будет работоспособен как квантовый компьютер.
- Какие ещё функции может выполнять транзистор?
- Сфера его применения очень широкая. Такие системы могут быть полезны, например, в медицине и биологии. Одна из наших работ — это кремниевый транзистор, так называемый нанопроволочный сенсор, он хорошо работает. В нем есть проволочка диаметром 15 — 50 нанометров, такие транзисторы мы полностью изготавливаем и исследуем у себя в институте.
- Для чего она нужна? Когда мы посередине неё помещаем отрицательный заряд, он создает электростатический барьер для электронов, мешает им пройти через проволочку. Чувствительность этого прибора — это единичный заряд электрона. Как только он захватывается на поверхность, проводимость меняется примерно на 10% только за счёт того, что у проволоки маленький размер. Этот принцип используется, например, для регистрации примесей в воде. Мы добавляем в раствор совсем немного молекул соляной кислоты, порядка одного фемтомоля (10-15 Моль/л), и регистрируем отрицательно заряженные ионы хлора.
Это довольно низкая концентрация, и наш прибор её хорошо чувствует. Кроме того, он отлично распознает в жидкости и другие молекулы химических веществ, например, белки. Известно, что альфа-фетопротеин — это свидетель неблагополучия в организме, у него есть две функции. Он подавляет иммунный ответ, в частности, между материнским организмом и новым, который находится внутри плаценты. С другой стороны, альфа-фетопротеин стимулирует здоровые клетки на борьбу с раковыми.
Есть виды рака, которые плохо диагностируется, например, рак желудка или поджелудочной железы. В случае такой болезни организм начинает вырабатывать альфа-фетопротеин. Естественно, он появляется в крови, и его можно зарегистрировать с помощью нашего прибора даже при очень низких концентрациях. Это хороший способ диагностики подобных заболеваний на ранней стадии.
Ещё один пример — вирус гепатита Б, который тоже вызывает появление антигенов, и с ними тоже есть гигантский ответ. Правда, эксперименты с такими белками ведём не мы, а наши коллеги из Института биомедицинской химии РАМН в Москве. Используется наш кремниевый чип, только многопроволочный.
На каждую нанопроволку микророботом наносится своё антитело, и прибор «срабатывает» от микролитра жидкости, то есть меньше чем от капли крови, если в нём есть соответствующие нанесённым антителам антигены. Биологам это нравится! В принципе, такой сенсор можно встроить, например, в сотовый телефон, и он, например, по потовым испарениям определит наличие инфаркта миокарда.
Ещё одно важное применение — расшифровка протеома человека.
Сначала считалось, что расшифровка генома даст ключ к болезням человека, но потом выяснилось, что организм функционирует гораздо сложнее. У человека примерно 40 тысяч генов и 4 миллиона белков, гены вырабатывают белки, и именно взаимодействие белков определяет, здоров человек или нет.