Samsung S3850 Corby II: предварительный обзор
Computer Space: игровой автомат из 2022 года
Интервью
Павел Иванов (МГУ) об «оптимизации» бактерий и биоводороде
Юрий Ильин
Опубликовано 15 марта 2011 года
Руководитель группы биоинформатики, геномики и системной биологии кафедры биофизики Физического факультета МГУ им. М.В.Ломоносова Павел Иванов рассказал нам об этом проекте.
- Расскажите, пожалуйста, над чем вы работаете.
- Речь идёт о проекте, который направлен на производство биоводорода, точнее, обычного молекулярного водорода бактериальными клетками. Водорода, который потом можно будет сжижать и транспортировать, как это делается в индустрии «водородного топлива».
Оказалось, в мире существуют бактерии, которые способны очень эффективно играть роль продуцентов такого водорода. Но сами по себе эти бактерии, относящиеся к роду Rhodobacter, производят водород в крайне малых количествах. Он бывает им нужен только для того, чтобы избавиться от лишних восстановительных эквивалентов в метаболических путях. Способом такого избавления как раз и служит выработка водорода. А вообще жизнедеятельность этих микроорганизмов с водородом никак не связана.
Благодаря чрезвычайно разнообразному метаболизму даже для бактериального мира они с лёгкостью приспосабливаются к радикальным изменениям в условиях существования, погубить их довольно сложно. Эти бактерии являются фотосинтезирующими клетками, но стоит выключить свет, и они спокойно живут дальше. Им нужен кислород, но они комфортно чувствуют себя и в анаэробных условиях. Другими словами, в этих клетках заложен огромный «биохимический потенциал», и те или иные метаболические пути вступают в игру в зависимости от того, что с этой клеткой происходит.
При таком разнообразии метаболических путей попытки заставить данные клетки производить водород, подбирая внешние условия их существования, не очень конструктивны. Вы меняете внешние условия, а бактерии без труда подстраиваются под них и продолжают «гнуть свою линию».
Вот тут и начинается работа, которая стала достаточно рутинной в современной генетике, или геномике, как её правильнее было бы назвать, — работа, связанная с генной инженерией. Её смысл сводится к выключению отдельных генов, приводящему к отключению отдельных биохимических реакций внутри клетки. Если всё сделано верно, то бактериальной клетке ничего не остаётся, как синтезировать водород. Другими словами, основная идея состоит в отключении максимального числа реакций, которые препятствуют выработке водорода данной клеткой.
Если нам удалось это сделать, то стоит пойти дальше и добавить этой бактерии геномный материал, который ещё больше увеличит скорость производства водорода. Тут есть два пути: либо сделать копии уже существующих генов, которые нужны для производства водорода, либо включить в геном данной бактерии отдельные гены или регуляторные участки из геномов других бактерий.
Оказывается, что и к ним тоже есть два подхода. Один – скорее эмпирический. Мы знаем, что это за бактерии — их изучением занимается десяток научных лабораторий в Америке, Германии, Японии и России. Мы знаем, как устроена биохимия именно этих клеток, да и вообще неплохо представляем себе биохимию микроорганизмов. На уровне наших качественных представлений можно попытаться выполнить необходимые генные манипуляции и посмотреть, что получится.
Другой подход набирает силу в последние пять-семь лет, особенно на Западе. Это скрупулёзное моделирование процессов, происходящих в бактериальной клетке, причём моделирование не только собственно биохимических реакций, но и регуляции, затрагивающей уровень генома. На основании такого моделирования можно попробовать точно предсказать, к чему приведёт включение и выключение конкретных генов, а также увеличение числа их копий и добавление генов из других бактерий. В идеале мы могли бы точно сказать, сколько водорода такие модифицированные клетки (мутанты) будут производить, например, на один грамм сухой массы.
Вот таким моделирование мы и занимаемся в нашей группе биоинформатики, геномики и системной биологии на физическом факультете МГУ. А дорогую инструментальную часть, связанную с генными манипуляциями и созданием мутантных штаммов, выполняют наши коллеги в Университете штата Вайоминг (США).