Дмитрий Комиссаров, генеральный директор PingWin Software:
"Если переходить к самой НПП, то мне видится, что для оценки её перспективности и полезности необходимо оценить документы, специфицирующие в деталях, что входит в платформу, какие стандарты, как и кто занимается сертификацией, каковы средства тестирования и верификации. На мой взгляд, на это уйдет ещё полгода-год.
Что с моей точки зрения принципиально и что уже неоднократно отмечалось и Президиумом совета по информационному обществу при Президенте РФ, платформа — это не ОС, а набор стандартов, определяющих, при соблюдении каких условий — репозиторий в России, полная пересборка из исходных кодов, соответствие стандартам (LSB прежде всего) и т.п. — операционная система может быть сертифицирована как входящая в платформу. Одновременно это и набор стандартов средств тестирования и анализа кодов, которые позволяют включать в платформу middleware и прикладной уровень.
Во всех частях обязательна конкурентная среда. Детализация состава платформы (middleware и прикладной уровень) — задача этого и, наверное, следующего года".
Интервью
Алексей Беклемишев (ИЯФ СО РАН) о термояде
Алла Аршинова
Опубликовано 14 апреля 2011 года
Старший научный сотрудник Института ядерной физики им. Г.И. Будкера СО РАН, кандидат физико-математических наук Алексей Беклемишев рассказывает о проекте новой установки по удержанию плазмы — газодинамической многопробочной ловушке (ГДМЛ). Возможно, её создание станет первым шагом к термоядерному реактору на основе открытой ловушки. Если ГДМЛ будет работать так, как это предсказывает теория, токамаки отдадут пальму первенства в области управляемого термоядерного синтеза открытым ловушкам, ведь последние, предположительно, будут в несколько раз дешевле при той же эффективности.
- В чём заключается проблема термоядерной энергетики?
- Проблема УТС, управляемого термоядерного синтеза, в принципе, решена. В начале девяностых годов на токамаках JET и TFTR была получена мощность термоядерных реакций, превышающая затраты на нагрев плазмы, и стало примерно понятно, каким может быть энергетический термоядерный реактор. Однако решение на основе существующих технологий и материалов слишком большое, дорогое и никому не нравится. Поэтому в начале девяностых годов центр тяжести был перенесён на технологии, а финансирование физических исследований резко сократили. Параллельно интерес к этой области пропал и у самих физиков, сократился приток студентов. Специалисты есть, но большинство из них предпенсионного возраста. Причём такая ситуация не только в России, но и во всём мире, кроме Китая. Так что первая проблема, с моей точки зрения, — это кадровый закат.
Токамак — установка для магнитного удержания плазмы с целью достижения условий, необходимых для протекания управляемого термоядерного синтеза. Плазма в токамаке удерживается не стенками камеры, которые способны выдержать её температуру лишь до определённого предела, а специально создаваемым магнитным полем (из "Википедии").
Физика плазмы — наука, построенная на основе классической электродинамики: все исходные уравнения известны, но решения удаётся найти только в некоторых частных случаях. Закон движения каждой частицы в плазме известен. Но как только частиц становится много и они начинают взаимодействовать — получается совсем другая задача. Уравнения, рассчитывающие их движение, не способен решить ни один суперкомпьютер мира. Рассчитать движение одной частицы можно, а когда их 1023, то и уравнений вам надо решить столько же. Поэтому многие явления мы до конца не понимаем и вынуждены применять феноменологию. Это значит, что мы сначала наблюдаем явление, а уже потом пишем уравнения и анализируем, а не наоборот. Так можно всё объяснить, но мало что предсказать. Физику плазмы можно сравнить с теорией турбулентности. Плазма обычно турбулентна, а её турбулентность ещё сложнее, чем в жидкости. Дело в том, что плазма состоит из электронной и ионной компонент, которые сложным образом взаимодействуют между собой. Так что вторая проблема в том, что объект нашего изучения оказался слишком сложным.