Выбрать главу

Наши палладиевые катализаторы по устойчивости к отравлению угарным газом во многом превосходят классические платиновые системы. Чтобы избежать проблемы отравления анодных катализаторов и исключить дорогостоящие стадии очистки топлива, наиболее перспективно получение изначально чистого водорода. Поэтому очень большой интерес вызывает именно процесс расщепления воды на водород и кислород.

Понятно, в воде нет углерода, и при ее расщеплении не образуются никакие загрязняющие вещества. Водород, полученный из воды, по чистоте может достигать 99.99 %. Но вода очень устойчивое соединение, и согласно законам термодинамики, энергетически гораздо более выгодно водороду с кислородом провзаимодейстовать и образовать воду, чем из воды получать водород и кислород.

Способов получить из воды водород и кислород много. Значительный интерес представляет ферментативный способ. Конечно, процесс не очень эффективный, но любопытный, другой метод — фотокаталитический, то есть расщепление за счет энергии солнца (ультрафиолета). Для этого необходимо поместить в воду и подвергнуть ультрафиолетовому облучению, которое может поступать от солнца. В результате происходит процесс расщепления воды на водород и кислород. Но тут возникает проблема разделения водорода и кислорода, так как их образование пространственно не разделено.

И еще один метод, наиболее мне близкий, электрокаталитический. Его суть заключается в том чтобы заставить работать водородный топливный элемент в обратном направлении — то есть не по пути окисления, а по пути восстановления водорода. Для этого на электроды ТЭ подают электрический ток (то есть теперь он потребляет электричество, а не вырабатывает его).

И чем активнее катализатор, тем более эффективно мы расщепляем воду на водород и кислород. Данный метод позволяет получать абсолютно чистое вещество, так как в топливном элементе процессы выделения водорода и кислорода разделены в пространстве. Такая схема, конечно, вызывает много скепсиса. Сначала мы потратили много энергии на то, чтобы из воды достать водород, а потом возьмем его и начнем точно также окислять. Нелогично. Если б мы могли это сделать без потерь энергии, то мы бы получили вечный двигатель, что невозможно.

Понятно, что глобально эта схема абсолютно неэффективна, но она обретает смысл, если реализовать процессы получения водорода ферментативно и фотокаталитически, либо электрокаталитически за счёт возобновляемых источников, энергию которых необходимо запасать. Конечно, можно поставить на зарядку много аккумуляторов и забыть о топливных элементах. Но в настоящем времени аккумуляторные батареи по показателю «запасаемая энергия-вес», по-видимому, достигли своего передела.

Безусловно, сейчас у нас очень маленькие аккумуляторы, но значительно меньше они навряд ли станут. Для телефона это не проблема, а если нужно питать что-то более серьезное, например, автомобиль, то аккумуляторы уже будут громоздкими и неудобным, и гораздо более эффективно было бы использовать топливные элементы. К тому же аккумуляторы требуют зарядки, в топливном элементе такой проблемы нет.

Мы можем заставлять его работать бесконечно, подавая топливо на один электрод, а кислород на другой. Поэтому многие считают, что за топливными элементами энергетическое будущее. Безусловно, на 100% мы не будем обеспечены электричеством за счет топливных элементов. По моему личному мнению, будущее за ядерной энергетикой, потому, что других альтернатив у нас пока нет. Но топливные элементы будут эффективны для обеспечения электроэнергией мобильных устройств и населённых пунктов, расположенных в труднодоступных местах.

- Военные, наверно, их используют активно.

- Да, в американской армии разрабатывали «умный жилет», это бронежилет, который будет следить за состоянием здоровья солдата и выполнять другие полезные функции, и чтобы питать эту сложную систему, много средств было вложено именно в разработку топливных элементов.

- Каким будет следующий шаг вашей работы? Какие задачи будете ставить перед собой?

- Мы постепенно отходим от проблемы анода, потому что в этой части ТЭ на данный момент достигнут заметно больший прогресс, чем, например, на катоде. До нас были проведены исследования, которые показали, что активность палладия можно повысить в три-четыре раза, мы ее повысили больше чем на порядок. А в присутствии яда (СО — угарный газ) — на три порядка. Я считаю, что в эту область мы внесли достаточно большой вклад.