В классической утопии Ивана Ефремова «Туманность Андромеды» овладевшее технологиями межзвёздных перелётов и галактической связи человечество располагает двумя гигантскими радиотелескопами, Памирским и Патагонским, каждый — четыреста километров в диаметре. В современной России реализуется проект, который даёт в руки учёным инструмент для радиоастрономических измерений с разрешающей способностью, эквивалентной зеркалу почти в тысячу раз большего диаметра!
Речь идёт об орбитальном радиоинтерферометре, созданном по программе РадиоАстрон, осуществляемой Астрокосмическим центром Физического института им. П.Н. Лебедева (АКЦ ФИАН). Ключевой элемент его — космический радиотелескоп, установленный на российском космическом аппарате «Спектр-Р». Этот пятитонный спутник был сконструирован в НПО им. Лавочкина и выведен в космос 18 июля 2011 года с помощью связки из ракеты-носителя «Зенит» и разгонного блока «Фрегат».
Орбита его сильно эллиптична, с апогеем в 340 000 километров и перигеем в 600 километров. Период обращения – восемь суток. На спутнике установлена приёмная параболическая антенна диаметром в десять метров. Именно с этой площади и собирается и концентрируется на входе радиометра излучение космических объектов. Так что по чувствительности сегодняшнему космическому прибору далеко не только до фантастических четырёхсоткилометровых, но и до реальных стометровых радиотелескопов.
Но достоинство его другое – разрешающая способность, обеспечиваемая применением технологии радиоинтерферометрии со сверхдальными базами. Ранее такие базы имели межконтинентальный размах, а сейчас почти дотянулись до орбиты Луны. Ну а если «Спектр-Р» проработает запланированные пять лет, то база его станет побольше лунной орбиты и составит 390 000 километров. Принцип намеченных исследований – одновременное наблюдение источника радиоизлучения наземным и космическим телескопами, с синхронизацией частоты.
C орбитальными эталонами частот знакомы, видимо, все читатели: мало кому удаётся избежать соприкосновения с GPS. Ну а тут примерно то же. Всем знаком период синхронизации у навигаторов. Ну а здесь после открытия антенны (заставившего понервничать учёных, но завершившегося благополучно) потребуется три месяца для синхронизации аппаратуры с наземными телескопами. Ими будут стометровые антенны в германском Эффельсберге и американском Грин-Бэнке и фиксированная антенна в кратере Аресибо.
Так что на борту спутника – полуторатонная антенна, сигнал с которой заводится на радиометр. Радиоприёмник с гетеродином на синтезаторе частоты, малошумящие усилители промежуточной частоты, преобразователи частоты, система передачи сигнала на землю. Поток данных, приносимых аппаратом, оценивается в 144 мегабита в секунду. Сеансы связи проходят сейчас из дальневосточного Уссурийска и подмосковных Медвежьих Озёр. С середины августа пошли сеансы через антенну двадцатидвухметрового радиотелескопа РТ-22 в Пущино.
Характеристики аппарата поражают. На длине волны наблюдений в 1,35 см обеспечивается разрешающая способность в восемь миллионных угловой секунды! Такие параметры дадут возможности проводить наблюдения строения и динамики галактических областей звёздообразования; получить данные о структуре и распределении межзвёздной плазмы, вызывающей флуктуации сигналов, приходящих от пульсаров; данные по структурам нейтронных звёзд и чёрных дыр.
Последнее, возможно, будет иметь колоссальную важность для послезавтрашнего человечества, которое перейдёт от получения энергии из синтеза лёгких ядер к черпанию её из эргосфер чёрных дыр, куда более эффективному… Но это – дело далёкого будущего. А вот построение высокоточной астрономической координатной системы и высокоточной модели гравитационного поля Земли — это, при кажущейся прозаичности и скучности таких работ, необходимейший фундамент и для дальнейших научных исследований, и для решения практических задач, скажем в построении глобальных систем навигации, в применении их для решения проблем геофизики…
Кроме радиотелескопа, на борту спутника размещена и аппаратура для научного эксперимента «Плазма-Ф» — двадцатикилограммовый прибор для мониторинга межпланетной среды. Он будет осуществлять исследование турбулентности солнечного ветра и магнитного поля в диапазоне 0,1-30 Гц и исследование процессов ускорения космических частиц. Этому помогает высокая эллиптическая орбита спутника, который на каждом витке несколько дней будет находиться вне магнитосферы Земли, что позволит наблюдать межпланетную среду, а потом проскочит все слои магнитосферы, благодаря чему можно будет следить за её поведением.