Выбрать главу

Развитие электроники привело к оптимизации механизмов управления воздушными судами. Русская аббревиатура ЭДСУ (электронно-дистанционная система управления) не настолько отражает суть пришедшего в авиастроение принципа, как английское Fly-by-Wire. Управляющее воздействие на приводы аэродинамических элементов в этом случае передаётся с помощью электрических сигналов. Первые ЭДСУ служили только для того, чтобы передать сигнал с датчиков штурвала на управляющие элементы.

Позже, в семидесятых годах, на смену существующим пришло новое поколение систем, на вход которых поступали не только сигналы о действиях пилота, но и информация об углах атаки, перегрузках и других лётных данных. На основании этих вводных уже цифровая ЭДСУ выдавала комплексные указания, не только обеспечивая управление самолётом, но и компенсируя и предупреждая некоторые ошибки пилота, не давая ему сойти в штопор или «свалить» самолёт. Для примера: на отечественном Су-27 при приближении к критическому режиму полёта ручка штурвала начинает дёргаться, имитируя жёсткую тряску самолёта. Да, именно как вибросигнализация на джойстиках игровых приставок.

Реализация электронной системы управления также стала необходима из-за того, что стало понятно, что планер с неустойчивой конструкцией окажется более манёвренным по сравнению с устойчивым самолётом. Неустойчивость означает, что если пилот отпустит штурвал самолёта, то машина не будет стремиться к возвращению к исходному положению. За поддержание стабильного полёта современных планеров и отвечает ЭДСУ, заодно избавляя от рутинных операций лётчиков не только военной, но и гражданской авиации.

Робот-пилот

Если системы управления самолётом настолько высокотехнологичны, то почему не предоставить искусственному интеллекту выполнение задачи доставки пассажиров по воздуху? Причина в том, что человеческий мозг и есть на самом деле самый совершенный компьютер, предназначенный для решения нестандартных задач. Компьютер может решить любую задачу, о которой знает и помнит группа разработки лётного программного обеспечения. Но что будет, если он столкнётся с неизвестной ему комбинацией факторов?

В полёте лётчику приходится решать множество задач, при этом постоянно принимая решения. В качестве примера — случай с командиром группы, заходившей на аэродром в условиях ограниченной видимости. В сложных для пилотирования условиях ему было необходимо проводить:

анализ обстановки;

cбор информации;

выделение вариантов: заход на посадку или уход на запасной аэродром;

взвешивание вариантов — нужно было предвидеть действия всех ведомых самолётов;

выбор варианта и решение о наиболее соответствующем действии;

подачу команды экипажу и ведомым бортам;

выдерживание режима полёта в сложных метеоусловиях;

работу с группой ведомых самолётов;

работу с руководителем полётов;

работу с экипажем: реагировать на сообщения, делать запросы, ожидать ответы, перепроверять сведения, отдавать команды.

На проведение этих действий в условиях аварийной ситуации (подача сигнала о сближении с землёй) у командира корабля ушла 31 секунда. Спроектировать возможность данной ситуации на земле практически невозможно, как и запрограммировать действия робо-пилота в ней. Возможности же человека в стрессовой ситуации — безграничны, равно как и число возможных комбинаций факторов, из которых может сложиться нештатная ситуация на борту.

Вовремя остановиться

Может быть, решение — в наращивании вычислительных мощностей современных самолётов? Современные вычислительные системы уже обладают достаточными возможностями для организации высокопроизводительных отказоустойчивых комплексов, даже в габаритах авиационного планера.

Проблема кроется прежде всего в отказоустойчивости. Если мы можем многократным дублированием добиться максимальной наработки аппаратной платформы на отказ, то создаваемое программное обеспечение, несмотря на наличие как западных (RTCA/DO-178B/ED-12), так и российских стандартов безопасности разработки (КТ 178В) всё равно не гарантирует 100 процентов работоспособности программного комплекса в полёте. Примером может служить трагическое происшествие с Airbus A310 в Иркутске в 2006 году. Тогда следственным комитетом при прокуратуре РФ в числе причин катастрофы пассажирского лайнера в ходе расследования были упомянуты ошибки в разработке логики бортового компьютера, а также непредвиденная реакция программного обеспечения самолёта на возникшую при посадке ситуацию. Такие инциденты обладают достаточным весом для того, чтобы пресечь все рассуждения о возможности тотальной автоматизации полёта авиационной техники.