Выбрать главу

Since 2011, I have thought about how to handle nuclear power plants in the context of domestic and global energy policy. Considering the risk of losing half our land and evacuating half our population, my conclusion is that not having nuclear power plants is the safest energy policy.

When I consider future energy policy, I am reminded that the sun has been the source of almost all energy on Earth for the last 4.5 billion years. When mankind manipulated the atom, paving the way for nuclear power plants as a source of energy, they created a technology that cannot coexist with life on Earth. Future energy policy should instead focus on expanding the use of renewable energy, such as wind, solar, and biomass energy, without recourse to nuclear power or fossil fuels. In Japan, renewable energy is rapidly gaining popularity and we have introduced a feed-in tariff system since the Fukushima disaster.

The risk of accidents is not the only problem with nuclear power plants. They generate spent fuel—nuclear waste—and no viable solution has been found for its safe disposal. Japan has more earthquakes than anywhere else in the world, and it is almost impossible to store nuclear waste safely here for long periods of time. Moreover, the conventional idea that nuclear power is the cheapest source of energy has been fundamentally disproved. Nuclear power is not cheap, especially when reprocessing and waste disposal costs are taken into consideration, and nuclear power plants are not, and never will be, justifiable economically despite what many experts and politicians in Japan still think. Nuclear power is only a transitional and temporary energy source. The technology will not and should not exist in the next century.

2

Living in a Contaminated World

Hiroaki Koide

A nuclear power plant is a facility in which electric power is generated from the energy released by the nuclear fission of uranium. When uranium undergoes fission, fission products accumulate within the core of the reactor. Because the fission products are radioactive, they produce heat.

After Fukushima Daiichi was struck by the earthquake and tsunami, the nuclear power plant lost its ability to generate electricity and to draw electricity from the power grid. The diesel generators for emergency use were flooded by the tsunami. But the radioactive materials in the reactor core continued to produce heat. Without cooling, the reactor core would melt down. Cooling required water, delivering water required a pump, and operating a pump required electricity. But there was no electricity and the pumps were not operable. Nor could anyone deliver water to cool the reactor cores. This could be the fate of any nuclear power plant.

Out of the six nuclear reactors in the Fukushima nuclear power plant, Units 1, 2, and 3 were in operation that day when they were struck by the earthquake and tsunami. Although the operators managed to stop the nuclear fission reaction, they failed to stop the decay heat released by the radioactive materials themselves. This led to meltdowns at Units 1 and 3.

The reactor core consists of around 100 tons of sintered uranium ceramic, which does not melt below 2,800 degrees Celsius. The heat in Unit 1, however, was so intense that its core melted. The section of the reactor that contains the core is like a pressure cooker made out of steel, which melts at 1,400 to 1,500 degrees Celsius. The melted ceramic melted through the steel and onto the floor of the containment vessel, the purpose of which is to seal off radiation. The fuel then burned through the protective wall, and radiation was released into the environment. At the same time, the hydrogen generated when the reactor core melted down caused an explosion in the building.

Cesium-137 was one of the most dangerous radioactive materials to be dispersed by the atomic bomb dropped on Hiroshima. The amount of cesium-137 that was released into the atmosphere by Fukushima Daiichi’s Units 1, 2, and 3 was 168 times that of the Hiroshima bomb, according to the Japanese government report to the International Atomic Energy Agency. This is an underestimate. Around 400 to 500 times the amount of cesium-137 dispersed by the Hiroshima atomic bomb has since been dispersed into the atmosphere due to the accident at Fukushima Daiichi. At the same time, almost the same amount of radioactive material has dissolved into water, flowing into the ground and into the ocean.

The Fukushima nuclear power plant is located on the Pacific coast of the Tohoku Region. To the east is the sea, and when the wind blew from the west, the radiation released from the Fukushima Daiichi nuclear power plant moved over the Pacific Ocean. However, when the wind blew from the south or the north, the radiation moved farther into the Tohoku Region or into the Kanto Region, and if Japanese law had been strictly observed, areas with soil contaminated by over 40,000 becquerels per square meter should have been designated as contaminated. However, altogether, this would have covered an area as large as twenty thousand square kilometers and a vast proportion of the Tohoku and Kanto Regions would have had to be evacuated. Faced with such a reality, the Japanese government decided they could do nothing for the people who lived there, and it abandoned them. More than one hundred thousand people who lived within approximately one thousand square kilometers of the plant were evacuated, losing their homes and now living in exile, but about 10 million people were left in areas that should have been designated as contaminated areas. They continue to be exposed to radiation every day.

The Fukushima Daiichi disaster is ongoing. On March 15, 2011, there was an explosion at Unit 4. Because it was offline at the time of the disaster, all the fuel rods in the reactor core had been transferred to the spent-fuel pool in the reactor building. There had been 548 fuel assemblies in the core, and the spent-fuel pool held 1,331 fuel assemblies. At the moment, they are at the bottom of the spent-fuel pool. The fuel that sank to the bottom of the pool contains enough cesium-137 to be the equivalent of more than 10,000 Hiroshima atomic bombs. Meanwhile, the reactor building, which was destroyed by the explosion, is still exposed to the environment, and there were aftershocks almost daily in the vicinity of the Fukushima nuclear power plant. If another earthquake occurs and should the spent-fuel pool collapse, it will be impossible to cool.

Japan chose to use nuclear energy. That choice has placed a terrible burden on the nation. It has cast the people living around the nuclear power plant into deep despair. It has forced many workers to engage in a desperate struggle to put an end to the disaster. Unfortunately, the clock cannot be turned back. We live in a contaminated world.

We must do what we can to bring an end to the disaster as soon as possible and to reduce the number of people exposed to radiation—especially children. However, Japan has been using nuclear power generation over a long period of time. Despite those in the political and economic spheres insisting that Japan cannot survive without nuclear power, data clearly show that the power supply would not be affected if Japan were to abolish all of its nuclear power plants. All of the nuclear power plants in Japan should be abolished as soon as possible, and Japan’s leaders should guide the nation toward that goal so that an even greater tragedy does not occur.

3

Another Unsurprising Surprise

David Lochbaum

The disaster at Fukushima Daiichi was triggered by a series of foreseeable hazards. The disaster began with an earthquake measuring 9.0 on the Richter scale, which should have come neither as a challenge nor as a surprise. The Fukushima Daiichi plant had been designed for severe accidents, and available evidence suggests that all safety systems survived the shaking and were cooling the reactor core as intended. The earthquake, however, extensively damaged the electric power grid, which the plant needed to power the pumps, the motors, the dampers, the lights, and everything it needed to cool the reactor cores.