Но для людей сложностей возникает куда больше. В отличие от лягушек люди не развиваются в яйцеклетках, находящихся вне организма матери: яйцеклетки человека проходят цикл развития в матке женщины, и они еще более хрупки и чувствительны к вмешательству извне, чем икринки лягушек. К тому же недостаточно просто внести генетический компонент клетки человека в яйцеклетку, из которой удален ее собственный набор генов; нужно еще поместить ее в утробу женщины или в искусственную матку. Обратная пересадка яйцеклетки человека чрезвычайно сложна. Известны только несколько случаев, когда такая яйцеклетка достигла полного развития. Дуглас Бевис из Лидского университета (Англия); успешно реимплантировал в матку нескольким женщинам яйцеклетки, оплодотворенные в пробирке, и женщины родили нормальных младенцев. Процесс реимплантации для клонирования не отличается от искусственного оплодотворения, и в настоящее время шансы на удачную реимплантацию невелики. Как подчеркивает научный обозреватель газеты "Нью-Йорк таймс", "из тридцати подобных попыток [только] три увенчались успехом".
Дополнительные сложности реимплантации заключаются в том, что матку необходимо подготовить точно к сроку при помощи определенных гормонов. Все эти гормоны уже имеются, но очень трудно ввести будущей матери точную дозу. Нелегко искусственным путем добиться того химического равновесия, которое позволяет зародышу человека через несколько дней после оплодотворения прикрепиться к стенке матки.
Не исключено, что настанет день, когда женщина обратится к врачу, у нее из яичника извлекут яйцеклетку, введут туда генетический материал из другой клетки и снова поместят яйцеклетку в матку женщины. Так женщина сможет родить свою или еще чью-нибудь точную генетическую копию.
Один из возможных будущих источников органов для пересадки — лимитированное (ограниченное) клонирование. Когда искусственное создание "выключателей", управляющих функциями клеток, станет реальностью, появится возможность клонировать отдельные органы. Сценарий (хотя пока только научно-фантастический) будет выглядеть примерно так.
Когда у человека по старости или в результате болезни какой-либо орган, например легкие, приходит в полную негодность, некоторое количество его генетического материала вводят в яйцеклетку. Больного погружают в "холодовый сон", а тем временем яйцеклетку помещают в искусственную матку из силастика. При помощи компьютера в матку вводится точное сочетание гормонов в нужной концентрации, что позволяет зародышу прикрепиться к пластиковой стенке. По мере развития плода в заменитель крови, питающий растущий организм, вводятся генетические репрессоры, которые выключают все программы развития, кроме, скажем, сердца, печени, почки или любого другого нужного для пересадки органа. Компьютер будет по-прежнему управлять концентрацией репрессоров в искусственной крови, и в сравнительно короткий срок в распоряжении медиков появится здоровое человеческое сердце, которое можно пересадить в грудную полость реципиента.
Поначалу новое клонированное сердце размером не более сердца ребенка будет использоваться в качестве "помощника", пока больной оправляется от пребывания в охлажденном состоянии и набирается сил. Через несколько месяцев больное сердце можно удалить, и новое сердце возьмет всю работу на себя. А так как новое сердце-клон из клетки самого, реципиента, оно не подвергнется отторжению, как сердце, взятое от трупа.
Другой сценарий для ограниченного клонирования еще проще.
Представим себе, что больной, страдающий сердечным заболеванием, подключен к аппарату сердце- легкие на длительный срок (сейчас это невозможно из-за разрушения форменных элементов крови). Участок сердца, пораженный болезнью, врачи удаляют, сохранив основу из здоровых клеток. В эти клетки введут "включатель" генов клеток сердца, который побудит их регенерировать новое сердце.
Уже появилась надежда, что со временем такое ограниченное клонирование станет реальным. В Уистарском институте в Филадельфии (частном исследовательском учреждении) Винсенту Кристофало удалось добиться размножения клеток человека в питательной среде значительно дольше, чем это предусмотрено "генетическим пределом" Хейфлика. Он добился этого, добавляя в питательную среду синтетический гормон гидрокортизон. Кристофало предположил, что при нормальном процессе некоторые дочерние клетки, возможно, теряют способность к делению из-за того, что не способны синтезировать необходимый для деления белок. В этом случае гидрокортизон может "подстегнуть" синтез белка и направить процесс в нужное русло. Если бы Кристофало мог заставить старые клетки, например клетки сердца, снова делиться под действием определенных химических веществ, включающих их гены, вполне вероятно, что его метод привел бы к ограниченному клонированию органов. А если бы это осуществилось, стало бы реальностью и выращивание новых органов вместо поврежденных.