3.3. Взлеты и падения пульсирующих вселенных
Если наша расширяющаяся вселенная, со знакомыми нам звездами и галактиками, не возникла вдруг спонтанно и из ниоткуда — каково же ее происхождение? Одно из мнений, имеющее длинную родословную, гласит, что она вовсе не имела начала. Она существовала всегда. Неизменно обаятельные мифы повествуют о циклической истории вселенной, которая периодически сгорает в великом пламени и затем, как феникс, возрождается из пепла [16, 6]. Современные космологические модели расширяющейся вселенной вторят этому сценарию. Говоря о закрытых вселенных, имеющих историю расширения, расширяющихся до максимума и затем снова сжимающихся до нуля, нельзя исключить, что этот эпизод космической истории будет повторяться и дальше. Предположим, что вселенная расширяется и сжимается снова, и снова, и снова — и так до бесконечности. Если это возможно, нет никаких причин думать, что мы находимся в первом цикле. Можно вообразить себе неисчислимое множество пульсаций в прошлом и подобное же количество — в будущем. Однако мы игнорируем тот факт, что в начале и в конце каждого цикла возникает сингулярность. Возможно, что отталкивающая гравитация остановит вселенную поблизости от точки бесконечной плотности, или же в момент сингулярности произойдет что‑то еще более экзотическое… но все это — голословные предположения.
Впрочем, нельзя сказать, что такие предположения не ограничены ничем, кроме нашей фантазии. Возьмем за основу, что эволюцией от цикла к циклу управляет один из центральных принципов, управляющих жизнью всей природы — второй закон термодинамики, сообщающий нам, что полная энтропия (или беспорядок) закрытой системы никогда не может убывать[14]. Упорядоченные формы вещества будут превращаться в беспорядочное излучение, а энтропия излучения будет постоянно возрастать. В результате будет повышаться общее давление, оказываемое веществом и излучением на вселенную, и размер вселенной будет увеличиваться в каждой последующей максимальной точке расширения[15]. По мере развития циклов они становятся все больше и больше! Парадоксальным образом вселенная все приближается и приближается к критическому состоянию уплощенности, которое мы воспринимаем как следствие непомерного расширения. Если же оглянуться в прошлое, то мы увидим циклы, в которых вселенная была все меньше и меньше: предположение о ее начале во времени здесь оказывается излишним, хотя понятно, что жизнь могла возникнуть лишь после того, как циклы стали достаточно большими и достаточно длительными для формирования атомов и биологических элементов.
Довольно долго эта последовательность событий принималась за свидетельство того, что в прошлом вселенная не переживала бесконечного ряда пульсаций, поскольку возрастание энтропии в конце концов должно было сделать невозможным существование звезд и жизни (см., например, [20]), а число фотонов, которое мы измеряем в среднем по вселенной на каждый протон (около миллиарда), дает оценку производства энтропии в прошлом. Однако теперь мы знаем, что эта величина не обязательно должна возрастать от цикла к циклу. С ее помощью нельзя измерить возрастание энтропии. В момент обращения развития вселенной все смешивается, а в дальнейшем число протонов, сравниваемое с числом фотонов, устанавливается достаточно ранними процессами. Одной из проблем такого рода может оказаться проблема черных дыр. Если уж крупные черные дыры, вроде тех, что мы наблюдаем в центре многих галактик, включая Млечный Путь, формируются, они будут иметь тенденцию накапливаться во вселенной от цикла к циклу, становясь все массивнее, пока наконец не поглотят всю вселенную, конечно, при условии, что они не разрушаются при каждом обращении или не превращаются в отдельные «вселенные», которые мы не можем ни увидеть, ни ощутить гравитационно. Смолин [29] предложил занимательную схему, согласно которой, вслед за коллапсом черная дыра разворачивается в новую расширяющуюся вселенную, параметры физических констант в которой немного сдвинуты. В долгосрочной перспективе это может привести к возникновению целой популяции новых вселенных, преобладать в которой будут производящие больше всего черных дыр. Очень небольшие сдвиги в физических константах могут снизить производство черных дыр в нашей вселенной. Однако вполне возможно, что такие вселенные не допускают существования наблюдателей, поэтому наш сценарий должен звучать так: мы, скорее всего, находимся во вселенной, которая максимизирует производство черных дыр, при условии, что в ней могут существовать наблюдатели.
14
Предположение здесь состоит в том, что в моменты, когда вселенная «поворачивает» в своем развитии, ничто не противоречит второму закону термодинамики.
15
Об этом впервые заговорил Р. К. Толмэн [33, 34]. Новый детальный анализ был сделан недавно Бэрроу и Дабровски [4].