Выбрать главу

Такое действие ускоряющегося космологического расширения имеет важные последствия для любых рассуждений о жизни в отдаленном будущем. Если жизнь требует для своего существования накопления и обработки информации, то мы должны спросить себя, всегда ли вселенная будет предоставлять условия для этого. Дайсон [13], а также Бэрроу и Типлер ([6], глава 10) показали, что при отсутствии энергии вакуума, когда расширение не ускоряется, имеются широкие возможности для сохранения этой самой основной формы жизни. Информация может храниться в состоянии элементарных частиц, которые приспособлены для этого гораздо лучше, чем наши нынешние компьютеры. Для неограниченного продолжения обработки информации живым системам необходимо создавать и поддерживать отклонения от абсолютной однородности температуры и энергии во вселенной [17]. При отсутствии ускоряющей энергии вакуума это всегда возможно, хотя, вероятно, и требует, чтобы жизнь использовала разницу гравитационных энергий, поддерживающую разность скоростей расширения вселенной на разных направлениях. Плотность энергии, поддерживающая эти различия, падает намного медленнее, чем у любой обычной формы материи. Небольшие отклонения в скорости расширения вселенной на различных направлениях могут привести к тому, что излучение будет охлаждаться с немного разной скоростью в разных направлениях. Этот температурный градиент можно будет использовать для совершения работы или для обработки информации. Конечно, это не означает, что жизнь в какой бы то ни было форме будетсуществовать вечно [11], не говоря уж о том, что она должнасуществовать вечно; речь идет лишь о логической и физической возможности, основанной на известных нам законах физики и предполагающей отсутствие энергии вакуума, пронизывающей вселенную.

Однако, как показали Бэрроу и Типлер (см. [6], р. 668), если энергия вакуума существует, все меняется — и меняется к худшему. Всякая эволюция неизбежно ведет к однородному состоянию, характеризующему ускоряющуюся вселенную де Ситтера. Обработка информации не может длиться вечно: она должна прекратиться. Чем ближе подходит материальная вселенная к состоянию однородности, тем меньше в ней полезной энергии будет доступно. Если энергия вакуума существует, но во вселенной недостаточно вещества, чтобы превратить ее расширение в сжатие прежде, чем энергия вакуума обретет контроль над расширением и начнет ускорять его [18], то вселенная, по–видимому, обречена на безжизненное будущее. Рано или поздно ускорение приводит к появлению коммуникационных барьеров. Мы уже не сможем получать сигналы из отдаленных областей вселенной. Мы окажемся как бы внутри черной дыры. Та часть вселенной, которая сможет влиять на нас (или на наших потомков) и с которой мы (они) сможем вступать в контакт, будет конечной. Чтобы избежать этого клаустрофобического будущего, было бы нужно уменьшение энергии вакуума. Мы полагаем, что она всегда должна оставаться постоянной, но возможно, что она незаметно уменьшается. Или, может быть, в один прекрасный день она внезапно перейдет в излучение и обычные формы вещества, и оставленная в покое вселенная понемногу соберется с силами и будет постепенно использовать гравитацию для того, чтобы вновь собирать материю, обрабатывать информацию. Однако возможно, что последствия будут и не столь благоприятны. Мы уже видели, что исчезновение энергии вакуума может предвещать падение вселенной даже на еще более низкий энергетический уровень, которому будут сопутствовать резкие перемены в ее физической природе. Возможно даже, что вакуум перейдет в новый вид материи, обладающий еще большей отталкивающей силой, чем сила лямбда. Если ее давление будет еще более негативным, в будущем нас ждут драматические события. Через какое‑то конечное время расширяющаяся вселенная может превратиться в сингулярность бесконечной плотности [19].

3.6. Изменчивые константы

Когда мы оцениваем долгосрочные космологические перспективы, важно точно знать, что в космосе не может измениться, сколько бы мы ни ждали. Такие неизменные величины у физиков принято называть «природными константами». Предполагается, что они всегда одни и те же. Существуют различные полученные в наблюдениях и экспериментах строгие ограничения, которые подтверждают это предположение, и стандартные модели физики элементарных частиц и космологии большого взрыва исходят именно из этой неизменности. Однако, если одной или нескольким из этих констант суждено измениться, пусть величина изменения сейчас и кажется совершенно незначительной для каких бы то ни было практических целей, в отдаленном будущем это может радикально изменить картину нашей вселенной. До недавних пор у нас не было никаких положительных свидетельств того, что некоторые традиционные природные константы — не просто константы. Разрабатывались теории, рассматривающие последствия изменений G, гравитационной постоянной Ньютона, но этот вопрос ставился преимущественно в чисто теоретическом ключе с целью установить ограничения на допустимые вариации с помощью наблюдательных данных. Однако, к общему изумлению, серия тщательных наблюдательных исследований [37, 38, 39] показала, что в красном смещении, между единицей и тройкой, тонкая структура становится приблизительно на семь миллионных долей меньше.

Теоретическое исследование [7, 8] этой ситуации открыло весьма необычную черту вселенных с изменчивостью таких констант, как константа тонкой структуры α или G. Если вселенная плоская и ее космологическая константа равна нулю, то значение α будет оставаться постоянным в раннюю эру излучения, но начинает изменяться в пылевую эру, пока кривизна вселенной или энергия вакуума не начнут влиять на расширение. Когда кривизна вселенной или энергия вакуума контролируют расширение, все изменения а прекращаются. Таким образом, для жизни может быть существенно, что кривизна или энергия вакуума в нашей вселенной не слишком малы [20] .Поскольку чем меньше эти эффекты, тем дольше будет возрастать значение α.

В конце концов оно станет слишком большим для существования атомов, и возможность жизни, как мы ее знаем, будет утеряна. В космологической истории существует определенная ниша для существования жизни, основанной на атомных структурах [9]. Существование крайне малого уровня пространственной кривизны, создающего открытую вселенную, или ненулевой энергии вакуума предотвращает возрастание константы альфа и позволяет атомам существовать в течение намного более долгих сроков.

Эти соображения показывают, что для создания достоверных и долгосрочных прогнозов о будущем вселенной и тех форм материи, которые смогут в ней существовать, необходимо полностью понимать феномен постоянства традиционных природных констант.

3.7. если эта теория верна — она не может быть оригинальной

Есть и последняя линия рассуждений, о которой также не следует забывать. В науке мы привыкли пренебрегать крайне маловероятными событиями несмотря на то, что они в принципе возможны. Например, законы физики допускают, что мой письменный стол взлетит и застынет в воздухе. Необходимо всего лишь, чтобы все его молекулы в ходе своих случайных движений одновременно устремились вверх. Такая возможность настолько невероятна даже в масштабе 15 миллиардов лет истории вселенной, что для всех практических целей о ней можно не вспоминать. Однако, когда перед нами бесконечное будущее, у любой фантастически невероятной физической случайности в конечном счете появляется немалый шанс воплотиться в жизнь. Энергетическое поле, сидящее на дне вакуумного ландшафта, рано или поздно совершит фантастический, невероятный прыжок вверх — прямо на вершину холма. Тогда для нас расширяющаяся вселенная начнется заново. Или, что еще более невероятно,

вернуться

17

Абсолютный минимум количества энергии, необходимый для обработки определенного количества информации, определяется вторым законом термодинамики. Если AI — количество обрабатываемой информации в битах, то второй закон термодинамики требует, чтобы ∆ IАE/kТ1п2=Е/Т(эрг /К)(1,05х10 16), где Т—температура в градусах Кельвина, k —постоянная Больцмана, а ∆ Е —количество израсходованной свободной энергии. Если температура больше абсолютного нуля (Т >0, как требует третий закон термодинамики), то существует минимальное количество энергии, которое должно быть израсходовано для обработки одного бита информации. Приведенное неравенство принадлежит Бриллюэну.

вернуться

18

Текущие наблюдения показывают, что в нашей вселенной это невозможно. По–видимому, она обречена расширяться вечно — по крайней мере, локально, а если сценарий вечного увеличения верен, то и глобально.

вернуться

19

Все это может произойти по меньшей мере через 30 миллиардов лет. Стоит отметить, что в будущем мы можем столкнуться с сингулярностью и без уничтожения энергии лямбда, даже если расширение будет длиться вечно. Всегда остается возможность, что нас без предупреждения поразит гравитационная ударная волна, идущая на нас со скоростью света.

вернуться

20

Мы признаем вместе с тем, что жизнь, по–видимому, требует, чтобы кривизна и энергия вакуума не были бы слишком велики —иначе они начнут сдерживать расширение так рано в истории вселенной, что галактики и звезды просто не смогут сформироваться [6]. Следовательно, нельзя ожидать, что в подобных вселенных возникнет жизнь, основанная на атомных структурах.