Вдохновленные блестящим успехом ньютоновской механики в астрономии, физики использовали ее для описания непрерывного течения жидкостей и колебаний упругих тел и вновь добились успеха. Наконец, даже теория теплоты получила механистическое обоснование, согласно которому теплота представляет собой энергию, порожденную сложным хаотическим движением молекул вещества. Так, при повышении температуры воды подвижность молекул возрастает до тех пор, пока они не преодолевают сил взаимного притяжения и не разделяются. При этом вода превращается в пар. Напротив, при охлаждении термическое движение замедляется, между молекулами возникает более прочная связь, и образуется лед. Подобным же образом можно с чисто механической точки зрения объяснить много других температурных явлений.
Триумф механики Ньютона убедил физиков в том, что ее законы управляют движением всей Вселенной и являются основными законами природы, и что явления природы не могут иметь другого объяснения. Тем не менее, по прошествии менее ста лет стало очевидно, что ньютоновская модель не может объяснить новые открытия, а ее закономерности действуют не всегда.
Все началось с открытия и исследования явлений электричества и магнетизма, которые не допускали механического толкования, свидетельствуя о существовании сил неизвестной до этого разновидности. Важный шаг был сделан Майклом Фарадеем и Клерком Максвеллом — первый из которых был одним из величайших экспериментаторов в истории науки, а второй — блестящим теоретиком. Когда Фарадей поднес к медной катушке магнит и вызвал в ней электрический ток, преобразовав таким образом механическую работу в электрическую энергию, наука оказалась в тупике. Этот фундаментальный эксперимент дал рождение разнообразной электрической инженерии и стал основой для теоретических размышлений Фарадея и Максвелла, плодом которых стала целая теория электромагнетизма. Фарадей и Максвелл, исследовав эффекты действия сил электричества и магнетизма, в первую очередь заинтересовались их природой. Они заменяли понятие «силы» понятием «силового поля» и первыми вышли за пределы физики Ньютона.
Вместо вывода о том, что два противоположных заряда притягиваются точно также, как две «точки массы» в ньютоновской механике, Фарадей и Максвелл сочли более приемлемым утверждать, что каждый заряд создает вокруг себя особое «возбуждение», или «состояние», так что противоположный заряд, находящийся поблизости, испытывает притяжение. Состояние способное порождать силу, было названо полем. Поле создает каждый заряд независимо от присутствия противоположного заряда, способного испытать его воздействие.
Это открытие существенно изменило представление о физической реальности. Ньютон считал, что силы тесно связаны с телами, между которыми они действуют. Теперь же место понятия «силы» заняло более сложное понятие «поля», соотносившееся с определенными явлениями природы и не имевшее соответствия в мире механики. Вершиной этой теории, получившей название электродинамики, было осознание того, что свет есть не что иное, как переменное электромагнитное поле высокой частоты, движущееся в пространстве в форме волн. Сегодня мы знаем, что и радиоволны, и волны видимого света, и рентгеновские лучи — не что иное, как колеблющиеся электромагнитные поля, различающиеся только частотой колебаний, и что свет — лишь незначительная часть электромагнитного спектра.
Несмотря на новые открытия, в основе физики все еще лежала механика Ньютона. Сам Максвелл пробовал объяснить результаты своих исследований с механистической точки зрения, считая поле напряженным состоянием эфира — очень легкой среды, заполняющей все пространство, а электромагнитные волны — колебаниями эфира. Это было вполне естественно, так как в волнах обычно видели колебание какой-либо среды: воды, воздуха и так далее. Однако Максвелл одновременно использовал несколько механистических объяснений своих открытий, очевидно, не воспринимая ни одного всерьез. Видимо, он интуитивно чувствовал, если и не говорил этого открыто, что главное в его теории — поля, а не механистические модели. На этот факт через десять лет обратил внимание Эйнштейн, заявивший, что эфира не существует, и что электромагнитные поля имеют свою собственную физическую природу, могут перемещаться в пустом пространстве и не относятся к явлениям из области механики.
Итак, в начале двадцатого века физика располагала двумя признанными теориями, каждая из которых объясняла природные явления лишь в одной разновидности; механикой Ньютона и электродинамикой Максвелла. Ньютоновская модель уже не была единственной опорой физики.
Первые три десятилетия нашего столетия радикально изменили положение дел в физике. Одновременное появление теории относительности и теории атома поставило под сомнение представление ньютоновской механики об абсолютном характере времени и пространства, о твердых элементарных частицах, о строгой причинной обусловленности всех физических явлений и о возможности объективного описания природы. Старые понятия не находили применения в новых областях физики.
У истоков современной физики — великое свершение одного человека, Альберта Эйнштейна. Две его статьи, опубликованные в 1905 году, содержали две радикально новые мысли. Первая стала основой специальной теории относительности Эйнштейна; вторая заставила по-новому взглянуть на электромагнитное излучение и легла в основу теории атома — квантовой теории. Квантовая теория в окончательном виде сформировалась через двадцать лет благодаря совместным усилиям целой группы физиков. Однако теорию относительности практически полностью разработал сам Эйнштейн. Научные труды Эйнштейна увековечили грандиозные достижения человеческого разума, став своего рода пирамидами современной цивилизации.
Эйнштейн был твердо уверен в том, что природе изначально присуща гармония, и его научной деятельностью руководило желание найти общую основу для всей физики. Первым шагом к этой цели было объединение двух самостоятельных теорий классической физики — электродинамики и механики — под эгидой специальной теории относительности. Она объединила и дополнила построения классической физики и одновременно потребовала решительного пересмотра традиционных представлений о времени и пространстве и подорвала одно из оснований ньютоновского мировоззрения.
Согласно теории относительности, неверно, что пространство имеет три измерения, а время существует отдельно от него. Одно тесно связано с другим, и вместе они образуют четырехмерный «пространственно-временной» континуум. Пространство, как и время, не существует само по себе. Далее, в отличие от ньютоновской модели, здесь нет единого течения времени. Разные наблюдатели, двигаясь с различными скоростями относительно наблюдаемых ими явлений, указывали бы разную их последовательность. В таком случае, два события, одновременные для одного наблюдателя, для других произойдут в различной последовательности. В результате, все измерения в пространстве и времени, которые становятся относительными, теряют свой абсолютный характер. И время, и пространство — лишь элементы языка, который использует некий наблюдатель для описания наблюдаемых явлений.
Понятия времени и пространства настолько основополагающи, что их изменение влечет за собой изменение общего подхода к описанию явлений природы. Самое важное последствие этого изменения — осознание того, что масса — одна из форм энергии. Даже неподвижный объект наделен энергией, заключенной в его массе, и их соотношение выражается знаменитым уравнением Е=мс^2 в котором с — скорость света.