The early Victorian apprentices in pottery, ironworking, brick firing, and even bricklaying were respected by, and respected, their masters. Together they laid down enduring monuments for future generations. Similarly, early trains and canals connected all the major cities, and connected factories to their suppliers and customers. This transport system paved the way to the wonderful economic network that Edwardian Britain inherited from the Victorians. These systems were not static, to be admired for what they had achieved. They were dynamic, they changed, they were processes as much as achievements. They changed the way succeeding generations thought about where and how they lived. Even today, our cities rely heavily on what the Victorians built, especially when it comes to sewerage and water supplies.
The resulting changes in thinking fuelled further changes. The combination of cause and consequence is an example of what we have elsewhere called complicity.[1] This phenomenon arises when two conceptually distinct systems interact recursively, each repeatedly changing the other, so that they co-evolve. A typical outcome is that
[1] See Jack Cohen and Ian Stewart, The Collapse of Cbaos (Viking, 1994).
together they work their way into territory that would have been inaccessible to either alone. Complicity is not mere `interaction', where the systems join forces to achieve some joint outcome, but are not themselves greatly affected as a result. It is far more drastic, and it changes everything. It can even erase its own origins, so that neither of the original separate systems remains.
The social innovations that were (arguably but not solely) triggered by Victorian ingenuity and drive are just like that. Because there was selection, and because the best growth often occurs in the best run and best designed parts of growing systems, there was recursion. The next generation was inspired by the previous generation's successes, and their noble mistakes, and built a better world. What we might call the Channel Tunnel Syndrome occurs quite often in capitalist, democratic societies, but not in totalitarian states or even in nations like, say, today's Arab states or twentieth-century India. And particularly not in nineteenth-century Russia or China: both were rich, but they had no respectable middle class.
The Victorian middle class was respected both by the workers whose lives they exploited - and opened up - and by the aristocrats, whose increasingly international outlook was progressively integrated with trade. Russia and China had political systems without an economically powerful, shareholding middle class, which could start or follow fashions, and support romantic, visionary ventures. Today, the British will still support a Channel Tunnel venture or a Beagle-2 Mars lander, because such things are romantic and possibly heroic, even though they are unlikely to be very profitable. A lengthy historical record shows very clearly that the first attempt at any major tunnel usually collapses financially - though after the tunnel is successfully built - often after a long series of attempts to shore up a failing enterprise. Then the ruins are bought for a song, occasionally nationalised or considerably financed by government or some other major capital source, and the resulting business can stand on the shoulders of the first. Only some rather strained economics has so far kept the original companies involved in the Channel Tunnel in business, at least on the British side of the Channel where everything was done by private enterprise.
Some projects are so romantic, so attractive in concept but so very difficult in execution, that three or four attempts are needed for them to acquire momentum. It is recursive structure of the complicit kind that keeps them afloat.[1] Telford's bridges are famous, as are so many of his other engineering works; his ability to capitalise on his successes was the result, and the cause, of his fame, which was achieved by what would now be called `networking' among aristocrats, government ministers, and pickle manufacturers. He was, as they said, famous for being famous. In America similar enterprises were measured more by the anticipated financial return, the `bottom line'. So John D. Rockefeller, Andrew Carnegie, and their ilk were worth supporting because your investment was guaranteed to multiply, rather than because the enterprise was exciting `for Queen and Country'. Early twentieth-century America had gigantic, monolithic Ford ... while England had a variety of small engineering concerns like Morris Garages (MG).
The other major reason why societies like Victorian England can pick themselves up by their bootstraps and fly is one we've discussed earlier. They lift themselves out of the old constraints, and into a new set of rules. In The Science of Discworld and The Science of Discworld II we explained why the space bolas, a kind of enormous Ferris wheel in orbit, is capable of carrying people into space far cheaper than rockets - in fact, requiring less energy than anyone would calculate using Newton's laws of motion and gravity. We took one
[1] In their 1980 book Autopoiesis and Cognition, Humberto Maturana and Francisco Varela confused this kind of recursion with a life force, and called it 'autopoiesis'. Many selfconsciously modem management experts cite this concept, without having the foggiest idea what it is.
further step, and invoked the space elevator, a very strong cable hung from geostationary orbit, which would be harder to build but would require even less energy. The trick is that people and goods coming down can help to lift other people and goods up. The energetics satisfy all the standard mathematical rules, but the context supplies an unexpected source of energy.
These gadgets work better than rockets, but not because these use relativity or other clever new physics like quantum. Or because they don't obey Newton's laws, because they do, to the extent that these are still relevant. Instead, the bolas and the elevator have new invention immortalised into them, so that a spaceman who gets into the cabin of a bolas in thin upper atmosphere from a jet aircraft can shortly afterwards get out of the cabin 400 miles up. Going at the right speed, it so happens, to catch the passing cabin of a 400-mile space bolas, which can deposit him, days later, in the right orbit to catch the 15,000-mile bolas, which deposits him in geostationary orbit, 22,000 miles up, after a couple of weeks. Such machines can be powered by using them to drop valuable asteroid material down to Earth, or (in the case of the bolas) by `pumping' them like a garden swing, using motors in the middle powered by sunlight and reeling in or letting out the cabin tethers as the bolas rotates.
Once we've made the huge initial investment required to build such machinery, rocket technology becomes largely obsolete, just as animal traction was dispossessed by the internal combustion engine. Sure, you can't attach 500 horses to the front of a big canal-barge, because there wouldn't be room on the towpath - but a 500horsepower marine engine is another matter entirely. Sure, a rocket would use far too much fuel to be a practical method for hoisting goods and people into orbit en masse - but that's not the only way to get them there. Yes, Newton's laws still have to be obeyed, and you have to `pay' to set everything up, and it still costs just the same energy to get people into orbit. But nobody pays once the machinery is there. If you don't believe this, go up in an elevator in a skyscraper, noting how the counterbalance weights go down, and return to solid ground. Then, to ram the message home, walk up the stairs.
The wordprocessor we're using to type this book is a metaphorical space elevator compared to a manual typewriter (remember those? Maybe not). A modem automobile is a space elevator compared to a Ford model T or an Austin-7, which were themselves bolases, while 1880s steam cars were rockets. Think of the investment that went into the Victorian railway system, the canals - then realise how this immense investment changed the rules, so that later generations could do all kinds of things that were impossible to their forebears.