On the other hand, no human agency ever bred dinosaurs. Does that imply that the agency was God - or did the dinosaurs somehow breed themselves into new forms? Darwin realised that there is another kind of `choice', imposed not by intelligent will but by circumstance and context. This is `natural selection'. In the vast, ongoing competition for food, living space, and the opportunity to breed, nature will automatically favour winners over losers. Competition introduces a kind of ratchet, which mostly moves in one direction: towards whatever works better. So we should not be surprised that tiny incremental changes from one generation to the next should possess some sort of overall `direction', or dynamic, with changes accumulating coherently across the aeons to produce something entirely different.
This kind of description is easily misunderstood as a kind of inbuilt tendency towards 'progress'- ever onwards, ever upwards. Ever more complex. Many Victorians took the message that the purpose of evolution was to bring humanity into being. We are the highest form of creation, we are at the top of the evolutionary tree. With us, evolution has arrived; it will now stop, having achieved its ultimate goal.
Rubbish. `Works better' is not an absolute statement. It applies in a context that is itself changing. What works better today might not do so in a million years' time - or even tomorrow. Maybe for a time, a bird's beak will `work better' if it is bigger and stronger. If so, that's how it will change. Not because the birds know what kind of beak will work better: because the kind of beak that works better is the kind that survives more effectively and is therefore more likely to be inherited by succeeding generations. But the results of the competition may change the rules of the game, so that later on, big beaks may become a disadvantage; for instance, suitable food may disappear. So now smaller beaks will win.
In short, the dynamic of evolution is not prescribed in advance: it is `emergent'. It creates its own context, and reacts to that context, as it proceeds. So at any given time we expect to find some sensible directionality to evolutionary change, consistent over many generations, but often the universe itself only finds out what that direction is by exploring what's possible and discovering what works. Over a longer timescale, the direction itself can change. It's like a river that flows through an eroding landscape: at any given time there is a clear direction to the flow, but in the long run the passage of the river can slowly change its own course.
It is also important to appreciate that individual organisms do not compete in isolation, or against a fixed background. Billions of competitions go on all the time, and their outcome may be affected by the results of other competitions. It's not like the Olympics, where the javelin-throwers politely wait for the marathon-runners to stream past. It's more like a version of the Olympics where the javelinthrowers try to spear as many marathon-runners as they can, while the steeplechasers are trying to steal their javelins to turn each hurdle into a miniature pole vault, and the marathon-runners' main aim in life is to drink the water-jump before the steeplechasers get to it and drink it first. This is the Evolympics, where everything happens at once.
The evolutionary competitions, and their outcomes, also depend on context. Climate, in particular, plays a big role. In the Galapagos, selection for beak size in Darwin's finches depends on how many birds have what size of beak, and on what kinds of food - seeds, insects, cactus - are available and in what quantities. The amount and type of food depend on which plants and insects are competing best in the struggle to survive - not least from being eaten by finches - and breed. And all of this is played out against a background of climatic variations: wet or dry summers, wet or dry winters. Observations published in 2002 by Peter and Rosemary Grant show that the main unpredictable feature of finch evolution in the Galapagos is climate. If we could forecast the climate accurately, we could predict how the finches would evolve. But we can't predict the climate well enough, and there are reasons to think that this may never be possible.
That doesn't prevent evolution from being `predictive', hence a science, any more than it prevents meteorology from being a science. But the evolutionary predictions are contingent upon the behaviour of the climate. They predict what will happen in what circumstances, not when it will happen.
Darwin almost certainly read Paley's masterwork as a young man, and in later life he may well have used it as a touchstone for his own, more radical and far more indirect, views. Paley succinctly expressed many of the most effective objections to Darwin's ideas, long before Darwin arrived at them. Intellectual honesty demanded that Darwin should find convincing answers to Paley. Such answers are scattered throughout Darwin's epic treatise The Origin of Species, though Paley's name does not appear.
In particular, Darwin found it necessary to tackle the thorny question of the eye. His answer was that although the human eye appears to be a perfected mechanism, with many interdependent parts, there are plenty of different `eyes' in the animal kingdom, and a lot of those are relatively rudimentary. They can even be arranged in a rough progression from simple light-sensing patches to pinhole cameras to complex lenses (though this arrangement should not be interpreted as an actual evolutionary sequence). Instead of half an eye, we find an eye that is half as effective at detecting light. And this is far, far better than no eye at all.
Darwin's approach to the eye is complemented by some computer experiments published by Daniel Nilsson and Suzanne Pelger [1] in 1994. They studied a simple model of the evolution of a lightsensing patch of cells, whose geometry could change slightly at every `generation', and which was equipped with the capacity to develop accessories such as a lens. In their simulations, a mere 100,000 generations were enough to transform a light-sensing patch into something approaching the human eye, including a lens whose refractive index varied from place to place, to improve its focus. The human eye possesses just such a lens. Moreover, and crucially, at every one of those 100,000 steps, the eye's ability to sense light got better.
This simulation was recently criticised on the grounds that it gets out what it puts in. It doesn't explain how those light-sensing cells can appear to begin with, or how the eye's geometry can change. And it uses a rather simplistic measure of the eye's performance. These would be important criticisms if the model were being used as some kind of proof that eyes must evolve, and as an accurate description of how they did it. However, that was never the purpose of the simulation. It had two main aims. One was to show that in the simplified context of the model, evolution constrained by natural selection could make incremental improvements and get to something resembling a real eye. It wouldn't get stuck along the way with some dead-end version of the eye that could be improved only by scrapping it and starting afresh. The second aim was to estimate the time required for such a process to take place (look at the title of the paper), on the assumption that the necessary ingredients were available.
Some of the model's assumptions are easily justified, as it happens. Light carries energy and energy affects chemical bonds, so it is not
[1] 'A pessimistic estimate of the time required for an eye to evolve', Proceedings of the Royal Society of London B, volume 256 (1994), pp. 53-8.
surprising that many chemicals respond to light. Evolution has an immense range of molecules to draw on - proteins specified by DNA sequences in genes. The combinatorial possibilities here are truly vast: the universe is not big enough, and has not lasted long enough, to make one molecule of each possible protein as complex as, say, haemoglobin, the oxygen-carrier in blood. It would be utterly astonishing if evolution could not come up with at least one light-sensing pigment, and incorporate it into a cell.