Выбрать главу

Так что я думаю, что предпочитаю Паскалевский подход встраивания подпрограмм ввода/вывода, даже если мы не нуждаемся в этом.

Как обычно, для этого нам нужны еще несколько подпрограмм генерации кода. Они, оказывается, самые простые из всех, потому что все, что мы делаем это вызываем библиотечные процедуры для выполнения работы.

{–}

{ Read Variable to Primary Register }

procedure ReadVar;

begin

EmitLn('BSR READ');

Store(Value);

end;

{–}

{ Write Variable from Primary Register }

procedure WriteVar;

begin

EmitLn('BSR WRITE');

end;

{–}

Идея состоит в том, что READ загружает значение из входного потока в D0, а WRITE выводит его оттуда.

Эти две процедуры представляют собой нашу первую встречу с потребностью в библиотечных процедурах... компонентах Run Time Library (RTL). Конечно кто-то (а именно мы) должен написать эти подпрограммы, но они не являются непосредственно частью компилятора. Я даже не буду беспокоиться о том, чтобы показать здесь эти подпрограммы, так как они очевидно очень ОС-зависимы. Я просто скажу, что для SK*DOS они особенно просты... почти тривиальны. Одна из причин, по которым я не буду показывать их здесь в том, что вы можете добавлять новые виды возможностей, например приглашение в READ или возможность пользователю повторить ошибочный ввод.

Но это действительно отдельный от компилятора проект, так что теперь я буду подразумевать что библиотека, называемая TINYLIB.LIB, существует.

Так как нам теперь нужно загружать ее, мы должны добавить ее загрузку в процедуру Header:

{–}

{ Write Header Info }

procedure Header;

begin

WriteLn('WARMST', TAB, 'EQU $A01E');

EmitLn('LIB TINYLIB');

end;

{–}

Она возьмет на себя эту часть работы. Теперь нам также необходимо распознавать команды ввода и вывода. Мы можем сделать это добавив еще два ключевых слова в наш список:

{–}

{ Definition of Keywords and Token Types }

const NKW = 11;

NKW1 = 12;

const KWlist: array[1..NKW] of Symbol =

('IF', 'ELSE', 'ENDIF', 'WHILE', 'ENDWHILE',

'READ', 'WRITE', 'VAR', 'BEGIN', 'END',

'PROGRAM');

const KWcode: string[NKW1] = 'xileweRWvbep';

{–}

(Обратите внимание, что здесь я использую кода в верхнем регистре чтобы избежать конфликта с 'w' из WHILE.) Затем нам нужны процедуры для обработки оператора ввода/вывода и его списка параметров:

{–}

{ Process a Read Statement }

procedure DoRead;

begin

Match('(');

GetName;

ReadVar;

while Look = ',' do begin

Match(',');

GetName;

ReadVar;

end;

Match(')');

end;

{–}

{ Process a Write Statement }

procedure DoWrite;

begin

Match('(');

Expression;

WriteVar;

while Look = ',' do begin

Match(',');

Expression;

WriteVar;

end;

Match(')');

end;

{–}

Наконец, мы должны расширить процедуру Block для поддержки новых типов операторов:

{–}

{ Parse and Translate a Block of Statements }

procedure Block;

begin

Scan;

while not(Token in ['e', 'l']) do begin

case Token of

'i': DoIf;

'w': DoWhile;

'R': DoRead;

'W': DoWrite;

else Assignment;

end;

Scan;

end;

end;

{–}

На этом все. Теперь у нас есть язык!

ЗАКЛЮЧЕНИЕ

К этому моменту мы полностью определили TINY. Он не слишком значителен... в действительности игрушечный комиплятор. TINY имеет только один тип данных и не имеет подпрограмм... но это законченный, пригодный для использования язык. Пока что вы не имеете возможности написать на нем другой компилятор или сделать что-нибудь еще очень серьезное, но вы могли бы писать программы для чтения входных данных, выполнения вычислений и вывода результатов. Не слишком плохо для игрушки.

Более важно, что мы имеем твердую основу для дальнейшего развития. Я знаю, что вы будете рады слышать это: в последний раз я начал с создания синтаксического анализатора заново... с этого момента я предполагаю просто добавлять возможности в TINY пока он не превратится в KISS. Ох, будет время, когда нам понадобится попробовать некоторые вещи с новыми копиями Cradle, но как только мы разузнаем как они делаются, они будут встроены в TINY.

Какие это будут возможности? Хорошо, для начала нам понадобятся подпрограммы и функции. Затем нам нужна возможность обрабатывать различные типы, включая массивы, строки и другие структуры. Затем нам нужно работать с идеей указателей. Все это будет в следующих главах.

Увидимся.

В справочных целях полный листинг TINY версии 1.0 показан ниже:

{–}

program Tiny10;

{–}

{ Constant Declarations }

const TAB = ^I;

CR = ^M;

LF = ^J;

LCount: integer = 0;

NEntry: integer = 0;

{–}

{ Type Declarations }

type Symbol = string[8];

SymTab = array[1..1000] of Symbol;

TabPtr = ^SymTab;

{–}

{ Variable Declarations }

var Look : char; { Lookahead Character }

Token: char; { Encoded Token }

Value: string[16]; { Unencoded Token }

const MaxEntry = 100;

var ST : array[1..MaxEntry] of Symbol;

SType: array[1..MaxEntry] of char;

{–}

{ Definition of Keywords and Token Types }

const NKW = 11;

NKW1 = 12;

const KWlist: array[1..NKW] of Symbol =

('IF', 'ELSE', 'ENDIF', 'WHILE', 'ENDWHILE',

'READ', 'WRITE', 'VAR', 'BEGIN', 'END',

'PROGRAM');

const KWcode: string[NKW1] = 'xileweRWvbep';

{–}

{ Read New Character From Input Stream }

procedure GetChar;

begin

Read(Look);

end;

{–}

{ Report an Error }

procedure Error(s: string);

begin

WriteLn;

WriteLn(^G, 'Error: ', s, '.');

end;

{–}

{ Report Error and Halt }

procedure Abort(s: string);

begin

Error(s);

Halt;

end;

{–}

{ Report What Was Expected }

procedure Expected(s: string);

begin

Abort(s + ' Expected');

end;

{–}

{ Report an Undefined Identifier }

procedure Undefined(n: string);

begin

Abort('Undefined Identifier ' + n);

end;

{–}

{ Recognize an Alpha Character }

function IsAlpha(c: char): boolean;

begin

IsAlpha := UpCase(c) in ['A'..'Z'];

end;

{–}

{ Recognize a Decimal Digit }

function IsDigit(c: char): boolean;

begin

IsDigit := c in ['0'..'9'];

end;

{–}

{ Recognize an AlphaNumeric Character }

function IsAlNum(c: char): boolean;

begin

IsAlNum := IsAlpha(c) or IsDigit(c);

end;

{–}

{ Recognize an Addop }

function IsAddop(c: char): boolean;

begin

IsAddop := c in ['+', '-'];

end;

{–}

{ Recognize a Mulop }

function IsMulop(c: char): boolean;

begin

IsMulop := c in ['*', '/'];

end;

{–}

{ Recognize a Boolean Orop }

function IsOrop(c: char): boolean;

begin

IsOrop := c in ['|', '~'];

end;

{–}

{ Recognize a Relop }

function IsRelop(c: char): boolean;

begin

IsRelop := c in ['=', '#', '<', '>'];

end;

{–}

{ Recognize White Space }

function IsWhite(c: char): boolean;

begin

IsWhite := c in [' ', TAB];

end;

{–}

{ Skip Over Leading White Space }

procedure SkipWhite;

begin

while IsWhite(Look) do

GetChar;

end;

{–}

{ Skip Over an End-of-Line }

procedure NewLine;

begin

while Look = CR do begin

GetChar;

if Look = LF then GetChar;

SkipWhite;

end;

end;

{–}

{ Match a Specific Input Character }

procedure Match(x: char);

begin

NewLine;

if Look = x then GetChar

else Expected('''' + x + '''');

SkipWhite;

end;

{–}

{ Table Lookup }

function Lookup(T: TabPtr; s: string; n: integer): integer;

var i: integer;

found: Boolean;

begin

found := false;

i := n;

while (i > 0) and not found do

if s = T^[i] then

found := true

else

dec(i);

Lookup := i;

end;

{–}

{ Locate a Symbol in Table }

{ Returns the index of the entry. Zero if not present. }

function Locate(N: Symbol): integer;

begin

Locate := Lookup(@ST, n, MaxEntry);

end;

{–}

{ Look for Symbol in Table }

function InTable(n: Symbol): Boolean;

begin

InTable := Lookup(@ST, n, MaxEntry) <> 0;

end;

{–}

{ Add a New Entry to Symbol Table }

procedure AddEntry(N: Symbol; T: char);

begin

if InTable(N) then Abort('Duplicate Identifier ' + N);