Вернёмся к плутонию. Он был обнаружен при изучении ядерных реакций в ЯР, хотя позже нашли его следы и в природе, правда, настолько редкие, что общий вес его на Земле оценивают не более чем в один килограмм. С другой стороны, на всех работающих АЭС на планете за год нарабатывается ныне около 60 тонн плутония (см. [26])!
Плутоний имеет 15 изотопов (с массовыми числами от 232 до 246), но и тут делящимися среди них есть лишь три изотопа: 233 Ри, 239Ри, да ещё 241 Ри, которые потому обычно и используются на практике. Но при этом лишь два последних могут порождать цепную реакцию — поскольку они делятся при поглощении медленных нейтронов, а значит, могут использоваться в качестве топлива для ЯР. 239Ри часто используется и для создания атомных бомб, тем более что его критическая масса почти на порядок меньше таковой для урана — она составляет от 5,6 до 10,5 кг (в зависимости от чистоты 239Ри от примесей). Кроме всего прочего, отметим: плутоний очень и очень ядовит…
Однако нам он интересен здесь тем, что при работе ЯР лёгкий уран потребляется (или выгорает), тогда как плутоний накапливается, причём его «коэффициент размножения со временем увеличивается…, сечение 239Ри больше, чем в два раза превосходит сечение 235U», согласно очень интересной книге американских авторов [9]. Вот откуда взялись те полтонны плутония в ЯР, о коих говорил акад. Велихов!
Но это не всё — еще академик Прохоров привлёк моё внимание к работам авторов-радиохимиков, точнее, к результатам измерений изотопного состава остатков топлива, которые были проведены ранее академиком Э.В. Соботовичем с сотрудниками ещё в 1986 г. (и опубликованы в статье [20], а затем и в ряде позднейших его работ), как и к работам других авторов.
Но ведь упомянутые исследования ещё с 1990 г. показывали, что «повсеместно отмечалось избыточное содержание изотопов урана U233и U234… В почвах ближней зоны ЧАЭС присутствует специфическая форма техногенного урана, характеризуемая высокой степенью обогащения изотопом U235» (там же, с. 888).
Затем авторы этой статьи сделали осторожное замечание: «Что же касается непосредственного источника поступления в окружающую среду этой мелкодисперсной формы урана, то он, к сожалению, пока не установлен…
Присутствие на РБМК-1000 ядерного топлива такой степени обогащения труднообъяснимо. Тем не менее, эта гипотеза среди всех прочих представляется нам наиболее приемлемой»([20], с. 888; выделено нами. — Н.К.).
Кроме того, не только вне блока наблюдались упомянутые «странности». И в самом деле, в работе [21] (уже других авторов) читаем: «К моменту аварии в активной зоне реактора… большая часть загрузки имела выгорание от 11 до 15 Мет сут/кг, в активной зоне было также некоторое количество свежего топлива» (с. 39; выделено нами. —Н.К.). В результате исследования авторами «препаратов вторичных урановых материалов, взятых с поверхности лавообразной топливосодержащей массы» во внутренних помещениях блока «соотношение пиков 235U и 238U соответствует обогащению ~2 %. Можно было бы предположить, что исследуемые минералы выросли из свежего топлива.Вместе с тем пик 239Ри примерно в 2,5 раза больше, чем 235U, хотя для случая среднего топлива отношение Pu/U должно было бы быть в 5 раз меньше.Такое несоответствие велико и не может быть объяснено методическими погрешностями. Также маловероятно, что отношение Pu/U вследствие каких-либо геохимических факторов становится больше, чем в исходном топливе» ([21], с. 42–43; выделения наши. —Н.К.). Иначе говоря, авторами выявлено превышение отношения плутония к урану в 5 раз (!), как если бы это должно было быть. А завершают они так: «Таким образом, вопрос об изотопном отношении в продуктах изменения облучённого ядерного топлива остаётся открытым» (с. 43).