Выбрать главу

#define C_STATIC_DELEGATE_VOID COMBINE(CStaticDelegateVoid, SUFFIX)

#define C_METHOD_DELEGATE_VOID COMBINE(CMethodDelegateVoid, SUFFIX)

template‹class TRet TEMPLATE_PARAMS›

class C_STATIC_DELEGATE_VOID: public I_DELEGATE‹TRet TEMPLATE_ARGS› {

 …

 virtual DelegateRetVal‹TRet›::Type Invoke(PARAMS) {

  m_pFunc(ARGS);

  return 0;

 }

 …

};

template‹class TObj, class TRet TEMPLATE_PARAMS›

class C_METHOD_DELEGATE_VOID: public I_DELEGATE‹TRet TEMPLATE_ARGS› {

 …

 virtual DelegateRetVal‹TRet›::Type Invoke(PARAMS) {

  (m_pObj-›*m_pMethod)(ARGS);

  return 0;}

 …

};

ПРИМЕЧАНИЕ В этом месте может возникнуть соблазн избежать дублирования кода, породив класс CStaticDelegateVoidX от CStaticDelegateX и CMethodDelegateVoidX от CMethodDelegateX соответственно. К сожалению, это не будет работать. Хотя мы и переопределяем виртуальный метод Invoke в производных классах, теоретическая возможность обратиться к Invoke базовых классов сохраняется. Поэтому компилятор честно попытается сгенерировать их реализацию. А это в случае TRet=void в очередной раз приведёт к ошибке, которую мы пытаемся обойти. Поэтому дублирование кода в данном случае неизбежно.

Осталось сделать последний шаг - перегрузить функцию NewDelegate ещё двумя реализациями:

template‹class TRet TEMPLATE_PARAMS›

I_DELEGATE‹TRet TEMPLATE_ARGS›* NewDelegate(TRet (*pFunc)(PARAMS)) {

 return new C_STATIC_DELEGATE‹TRet TEMPLATE_ARGS›(pFunc);

}

template‹class TRet TEMPLATE_PARAMS›

I_DELEGATE‹TRet TEMPLATE_ARGS›* NewDelegate(void (*pFunc)(PARAMS)) {

 return new C_STATIC_DELEGATE_VOID‹void TEMPLATE_ARGS›(pFunc);

}

 // Аналогично для CMethodDelegate*

В этом месте нас поджидает ещё один сюрприз. В большинстве случаев этот код будет работать, как по маслу. Но при задании TRet=void возникнет неоднозначность при обращении к функции NewDelegate. Правила разрешения перегрузки шаблонов функций описаны в разделе 14.5.5.2 Стандарта языка C++. В соответствии с этими правилами вторая версия NewDelegate не считается более специализированной, чем первая, так как для вызова обоих вариантов функции не требуется неявных преобразований типа.

Чтобы разрешить эту неоднозначность, придётся ввести дополнительный параметр функции NewDelegate, по которому и будет выбираться нужная версия функции:

// Параметр этого типа будет индикатором

template‹int use›

class UseVoid {};

template‹class TRet TEMPLATE_PARAMS›

I_DELEGATE‹TRet TEMPLATE_ARGS›* NewDelegate(TRet (*pFunc)(PARAMS), UseVoid‹0›) {

 return new C_STATIC_DELEGATE‹TRet TEMPLATE_ARGS›(pFunc);

}

template‹class TRet TEMPLATE_PARAMS›

I_DELEGATE‹TRet TEMPLATE_ARGS›* NewDelegate(TRet (*pFunc)(PARAMS), UseVoid‹1›) {

 return new C_STATIC_DELEGATE_VOID‹TRet TEMPLATE_ARGS›(pFunc);

}

Тем самым мы избавляемся от неоднозначности. Но возникает другая проблема. Теперь при вызове NewDelegate необходимо явно указывать, какая версия функции нам нужна:

void f();

int g();

NewDelegate(f, UseVoid‹1›());

NewDelegate(g, UseVoid‹0›());

Чтобы избавиться от необходимости явно указывать параметр UseVoid, напишем третий вариант функции NewDelegate, который будет автоматически (причём на этапе компиляции) определять и вызывать нужную версию этой функции. Для реализации этой идеи нам потребуется механизм преобразования типа TRet в константу 1 (в случае TRet=void) или 0 (для всех остальных типов). Мы уже решали аналогичную задачу в классе DelegateRetVal, поэтому теперь решение записывается без труда:

template‹class T›

struct IsVoid {

 enum { Result = 0};

};

template‹› struct

IsVoid‹void› {

 enum {Result = 1};

};

Теперь воспользуемся классом IsVoid для выбора нужного варианта функции NewDelegate.

template‹class TRet TEMPLATE_PARAMS›

I_DELEGATE‹TRet TEMPLATE_ARGS›* NewDelegate(TRet (*pFunc)(PARAMS)) {

 return NewDelegate(pFunc, UseVoid‹IsVoid‹TRet›::Result›());

}

Аналогичным образом NewDelegate перегружается для случая создания объектов CMethodDelegate*:

I_DELEGATE‹TRet TEMPLATE_ARGS›* NewDelegate(TObj* pObj, TRet (TObj::*pMethod)(PARAMS), UseVoid‹0›) {

 return new C_METHOD_DELEGATE‹TObj, TRet TEMPLATE_ARGS› (pObj, pMethod);

}

template ‹class TObj, class TRet TEMPLATE_PARAMS›

I_DELEGATE‹TRet TEMPLATE_ARGS›* NewDelegate(TObj* pObj, TRet (TObj::*pMethod)(PARAMS), UseVoid‹1›) {

 return new C_METHOD_DELEGATE_VOID‹TObj, TRet TEMPLATE_ARGS› (pObj, pMethod);

}

template ‹class TObj, class TRet TEMPLATE_PARAMS›

I_DELEGATE‹TRet TEMPLATE_ARGS›* NewDelegate(TObj* pObj, TRet (TObj::*pMethod)(PARAMS)) {

 return NewDelegate(pObj, pMethod, UseVoid‹IsVoid‹TRet›::Result›());

}

Если вас успели утомить эти "хождения по мукам", у меня есть для вас хорошая новость. Проблема, которую мы только что решили, была последней. Осталось заменить возвращаемые значения методов Invoke и operator() в классе CDelegate на DelegateRetVal‹TRet›::Type, чтобы получить законченную реализацию делегатов для Visual C++ 6.0.

Полную версию реализации делегатов для Visual C++ 6.0 можно найти на сопровождающем компакт-диске.

Больше, лучше, быстрее

Реализация делегатов, которую мы рассмотрели выше, вполне работоспособна. Тем не менее, некоторые её особенности вызывают озабоченность. Во-первых, интенсивное использование шаблонов может привести к чрезмерному разбуханию кода. Во-вторых, объекты делегатов распределяются динамически (при помощи оператора new). Поскольку на создание объектов в куче тратится гораздо больше времени, чем на создание стековых объектов, это может привести к проблемам производительности. В этом разделе мы рассмотрим некоторые пути преодоления этих проблем.