Наконец, если теория геострофического ветра полагается на участие силы Кориолиса, как причины отклонения движения тёплых масс воздуха на их пути к полюсам, то можно ли забывать, что такому движению должен быть противопоставлен такой же обратный поток холодных масс с обратным Кориолисову ускорением, то есть противопоток, гасящий общее опережающее вращение всей атмосферы относительно вращения самой Земли. Здесь ничего не даёт и встречающееся указание об отсутствии силы трения для масс, участвующих в геострофическом ветре. Теория оставляет не выясненным важный вопрос: почему области низкого давления на Земле расположены у полюсов? Ведь здесь воздух всегда холоднее и, казалось бы, уже по этой причине должен быть плотнее, а не наоборот.
Незавершенность, а нельзя исключить, что и ошибочность общей теории глобальной циркуляции, стала одним из серьезнейших препятствий в объяснении загадок климата и погоды. И не случайно по этому поводу делается такое неутешительное заключение:
«Модели общей циркуляции атмосферы и океана, которые в настоящее время разработаны в мире, в принципе дают возможность оценить последствия крупных энергетических и других экологических изменений. Но эти модели ещё настолько несовершенны, что трудно принимать всерьёз полученные по ним результаты» (Марчук Г. М.,1980, с.121).
Если вызывает сомнение объяснение, возможно поспешно названное теорией, то почему бы не предложить на его место хотя бы гипотезу, лучше отвечающую реальной картине?
Например, С. П. Хромов считал, что общий перенос атмосферы вполне можно представить, как планетарный циклонический вихрь над каждым из полушарий. Почему бы, например, общую циркуляцию земной атмосферы не вообразить в виде модели, представляющей собой два гигантских тайфуна, обволакивающих поверхность южного и северного полушарий Земли. Тогда общим центром их вращения окажется земная ось, а двумя «глазами» вокруг центра вращения – околополюсные пространства. Каждый такой гипотетический «тайфун» лишь вблизи экватора имеет угловую скорость меньше угловой скорости вращения Земли и здесь наблюдается отставание атмосферы, то есть преобладание восточного переноса воздушных масс. На прочих широтах, исключая приполюсные, угловая скорость «тайфуна» увеличивается с приближением к его «глазу» и атмосфера уже обгоняет здесь вращение Земли. Вспомним «ревущие сороковые», «неистовые пятидесятые» в южном полушарии или пурги и метели – северном, где господствуют западные ветры. И, наконец, обе приполюсные зоны. Здесь, как и в «глазе» всякого тайфуна, воздух почти не вращается, но вращается Земля и потому атмосфера отстаёт и смещается теперь уже с востока на запад. «Глаз» тайфуна характеризуется пониженным давлением воздуха – здесь наблюдается то же. В «глазе» тайфуна обычно бывает повышенной температура воздуха, но разве мы уверены в том, что на полюсах Земли температура не могла быть ниже? Например, последние измерения, проведенные на Венере, обнаружили, что у её полюсов температура атмосферы оказалась наиболее высокой. А почему бы не допустить, что законы динамики планетных атмосфер общие.
Но довольно. Эта может быть и красивая гипотеза, но слаба тем, что тоже ещё не способна объяснить природу тех явлений, с которыми вроде бы удовлетворительно согласуется. Здесь, наконец, сохраняются те же загадки, которые всё ещё мешают познать физическую суть рядового тайфуна. Но изложили мы её не случайно, ибо далее, уяснив роль земного тяготения в движении атмосферных масс, надеемся вернуться к ней с багажом новых представлений.
Из вышесказанного следует, что если общеземная атмосфера и могла бы более существенно влиять на повышение температуры в полярных областях, то этому оказывается мешает отсекающее влияние глобального круговорота воздушных масс. А для понимания природы климатов важно знать и то, «каким теплом живут» полярные области Земли.
Известно, что перенос тепла атмосферной адвекцией определяется удельной теплоёмкостью самого воздуха и его способностью переносить и конденсировать водяной пар. Удельная теплоёмкость воздуха составляет 0,24 кал/г °C, что в 4 раза меньше теплоёмкости воды. Поскольку же приземный воздух в 400 раз менее плотен, чем вода, то единица его объёма в естественном состоянии потребляет или отдаёт теплоту нагревания – охлаждения уже в I 600 раз меньше, чем вода.