Выбрать главу

Рис. 3. Типичный ход температуры воздуха (пунктирная линия) и воды (кривая) перед образованием на ней льда. Временное падение температуры воды ниже 0 °C вызывается её переохлаждением из-за отсутствия ядер кристаллизации.

В более известной, неоднократно переизданной работе В. В. Шулейкина (1962, с.70) можно прочесть: «При таянии каждого грамма льда поглощается, как известно, около 80 кал, которые отнимаются от окружающей воды». Это уже грубая ошибка – от воды, покрытой льдом, теплота таяния отниматься не может, поскольку в присутствии льда вода уже предельно охлаждена и, далее отдавая тепло, может только замерзать. В этой же работе, как итог всех рассуждений, показан тепловой баланс «Ледовитого» моря, в котором теплота кристаллизации значится в приходе тепла морю, а теплота плавления – в расходе. Здесь уже все поставлено с ног на голову. Я не умолчал фамилию автора этой широко известной работы, безусловно талантливого и крупного ученого, академика, чтобы показать, как за спиной его авторитета в науку проникла ошибка, далеко уводящая от истины. К слову сказать, мои ранние попытки указать на эту ошибку всегда оборачивались против меня же. Зато публиковались работы, призванные как бы развеять туман над неясностями физики фазовых превращений. Но туман ещё более сгущался.

В работе тоже доктора наук профессора, адресованной специалистам и студентам, для этого используется известный график типичного хода температуры начала образования льда в воде дополненный нами (рис. 3).

Он объясняет отклонение графика температуры воды вверх тем, что «с возрастанием интенсивности кристаллизации увеличивается количество выделяющегося в воду тепла…». Как видно, здесь опять кристаллизация становится источником тепла для воды. Но очевидно, что теплота кристаллизации, как всякая теплота, при неоднородном поле температуры может передаваться (отводиться, изыматься) только в среду, имеющую температуру ниже температуры замерзания воды. Для замерзающего водоёма такой средой является атмосфера и только ею и в ее сторону вынужденно изымается теплота кристаллизации.

Что касается изгиба на графике температуры начала замерзания, то он вызывается некоторым переохлаждением воды из-за недостатка ядер кристаллизации – условия, необходимого для начала замерзания. Как только ядро кристаллизации попадает в такую воду, её переохлаждение мгновенно реализуется на образование соответствующего дополнительного количества льда уже вне связи с продолжающейся потерей тепла водой в атмосферу. Такой процесс скоро и неизбежно вызывает повышение температуры вновь образующегося льда до температуры нормального замерзания воды, что и отражает график. Количество образующегося таким путём льда легко определяется, если известна температура, до которой переохлаждалась вода.

Очевидно, что теплота кристаллизации не может выделятся в воду, равно как и теплота плавления не может отвлекаться из воды в присутствии льда. Когда это положение четко усвоено, то становится понятной простая зависимость, что на водоёмах количество теряемой и усваиваемой теплоты фазовых переходов прямо соответствует количеству намерзающего или стаиваемого льда.

Покажем, как далеко от истины уводит ученых нечеткое представление об этих положениях. Так, в работе А. А. Лебедева и Н. С. Уралова (1981), озаглавленной «Результаты оценки тепла фазовых превращений морского льда в северном полушарии Земли», уже настораживает заглавие – зачем оценивать особо теплоту фазовых превращений, если уже производились многочисленные оценки, в том числе и указанными авторами, объёмов намерзания льда в северном полушарии? Не пустая ли это работа?

С первых строк в работе обнаруживаются последствия прижившихся ошибок. И здесь теплота кристаллизации относится в приходную часть теплового баланса океана, а теплота плавления – в расходную, хотя очевидно, что с потерей теплоты кристаллизации энтальпия океана уменьшается, а при усвоении теплоты плавления увеличивается. Авторы делают заключение, что при образовании и таянии льда в Арктическом бассейне и его морях усваивается и теряется одинаковое количество теплоты кристаллизации и теплоты плавления. Но и это заключение неверно, поскольку давно и надежно установлено, что из Арктического бассейна лёд постоянно выносится, а значит здесь его ежегодно намерзает больше, чем тает. Соответственно и разнонаправленные обмены теплотой фазовых переходов вряд ли могут быть равными. В работе показывается, что с выносом льда из Арктического бассейна якобы теряется значительное количество тепла. Но ведь энтальпия единицы массы льда меньше, чем энтальпия такой же массы воды, а, следовательно, вынос льда из бассейна приводит к увеличению его энтальпии (к приходу тепла), что правильно и принималось ранее в расчетах.