Такое изменение емкости конденсатора неудобно при настройке приемника, так как длина волны изменяется не прямо пропорционально изменению емкости, а по более сложному закону[2]. Такая зависимость называется квадратичной. Если мы построим конденсатор с соответственным образом рассчитанной формой пластин, то мы можем получить пропорциональное изменение длины волны в зависимости от угла поворота ручки конденсатора. Этот конденсатор получил название квадратичного или прямоволнового.
Изготовление прямоволнового конденсатора. Прямоволновой конденсатор отличается от конденсатора с полукруглыми пластинами прежде всего формой подвижных пластин, а также расположением этих пластин по отношению к неподвижным. Так как расчет формы подвижных пластин может затруднить неподготовленного читателя, то нами на рис. 16 приводится чертеж — выкройка пластин конденсатора в натуральную величину.
При постройке прямоволнового конденсатора следует изготовить 8 подвижных пластин формы, указанной на рис. 16. Неподвижных пластин изготовляют 9 штук; форма этих пластин треугольная.
Материалом для пластин конденсатора может служить алюминий, латунь, листовой цинк или жесть; толщина пластин конденсатора 0,3–0,5 мм.
Емкость конденсатора минимальная, когда подвижные пластины выведены наружу, а максимальная емкость, когда подвижные пластины находятся под неподвижными. Из рисунка 16 видно, что ось конденсатора находится не по середине, как это было в описанной ранее конструкции, а расположена несколько сбоку. На чертеже-выкройке место, где должна быть ось, показано кружком.
Конденсатор монтируется на двух основаниях, приготовляемых из эбонита или карболита.
Сборка неподвижных пластин прямоволнового конденсатора производится таким же способом, как и сборка пластин конденсатора обычного типа. В трех углах пластин, а также в обоих основаниях конденсатора просверливаются отверстия, сквозь которые пропускаются 3 латунных стержня толщиной 3–4 мм. Эти стержни имеют у концов нарезку для помещения на них гаек, стягивающих неподвижную систему пластин. При сборке конденсатора между пластинами на стержнях помещаются шайбы-прокладки. Эти прокладки изготовляются из спирали навитой из медной проволоки толщиною в 2,5 мм. на какой-либо металлический стержень диаметром 3 мм. Для того, чтобы намотать эту спираль, надо стержень и конец проволоки зажать в тиски и наматывать спираль плотно виток к витку. Далее спираль снимается со стержня, зажимается в тиски и распиливается вдоль под углом в 45°. Полученные таким образом кольца-шайбы расправляются сначала в тисках, а затем на твердой доске деревянным молотком.
Подвижные пластины собираются с такими же прокладками из медной проволоки на оси, в качестве которой служит стержень толщиной 4 мм. Ось имеет винтовую нарезку с обоих концов. Собранные подвижные пластины стягиваются двумя гайками, а на основаниях помещаются втулки, в которых ходит ось. В качестве втулок можно воспользоваться штепсельными гнездами, которые ввинчиваются в основания конденсатора и укрепляются имеющимися на них гайками с обеих сторон основания. Гнезда должны быть подобраны так, чтобы ось ходила бы в них плотно с некоторым трением, без игры.
Подвинчиванием гнезд можно отрегулировать правильное положение системы подвижных пластин среди неподвижных. Прямоволновый конденсатор описанной нами конструкции показан на рис. 17.
Черт. 17, 19, 20 и 21.
Прямочастотный конденсатор. В конденсаторе этого типа получается пропорциональная зависимость между углом поворота его ручки и частотой.
Следует заметить, что в радиотехнике понятие «длина волны» заменяет понятием «частота»[3], при чем ввиду того, что особенно при коротких волнах, получаются слишком большие числовые значения, для частоты считают тысячу периодов за 1 килоцикл. Для примера укажем, что для того, чтобы выразить длину волны радиотелефонной станции им. Коминтерна в килоциклах, надо 300.000 разделить на 1450, что составит 20,68 килоциклов.
Прямочастотный конденсатор, обладая минимальной начальной емкостью, применяется главным образом в чувствительных схемах, где требуется плавная настройка. Если прямочастотный конденсатор обладает минимальными потерями и рассчитан на небольшую емкость, то такой конденсатор является наиболее подходящим для приема коротких волн.
3
Частота или число периодов в секунду связана с длинной волной следующей зависимостью f = 300.000.000/λ, где f частота, λ длина волны в метрах. 300.000.000 м/сек. скорость распространения электромагнитной энергии.