Один из важнейших недостатков фотосопротивлений — их инерционность. В современных твердых усилителях она особенно сказывается. Проявляется она таким же образом, как и инерционность глаза, — в виде последовательных образов (положительных и отрицательных, в зависимости от условий). В жизни последовательные образы редко мешают нам и мы даже не замечаем их. Но последовательные образы в твердых усилителях проявляются неизмеримо заметнее. Они бывают очень яркими и сохраняются в течение довольно долгого времени: объект может уже исчезнуть, а на экране твердого усилителя он по-прежнему будет виден. Поэтому твердые усилители пока используют только для наблюдения неизменных или очень медленно меняющихся изображений. Надо надеяться, что со временем этот недостаток полупроводниковых усилителей света будет устранен. Но удастся ли при этом сохранить столь высокую чувствительность, сказать пока еще трудно.
Фабрика электричества
До сих пор речь шла о таких фотоэлементах, которые пропускают через себя ток, проводят его под воздействием света, но только в том случае, если к ним подключен источник напряжения: батарея, выпрямитель и тому подобное. Сами по себе эти фотоэлементы не отдавали тока во внешнюю цепь при освещении светом любой интенсивности.
Но, оказывается, есть фотоэлементы и с иными свойствами. Под воздействием света они отдают во внешнюю цепь ток, пропорциональный падающему световому потоку, без помощи внешних источников электрической энергии. Фотоэлементы такого типа сами являются источниками электрической энергии. Они вырабатывают ее из лучей падающего света и таким образом являются преобразователями световой энергии в электрическую.
До недавнего времени такие фотоэлементы изготавливались только из селена. О них хорошо знают фотолюбители, потому что в электрических фотоэкспонометрах как раз и применяются селеновые фотоэлементы. Но они являются очень плохими преобразователями энергии, их коэффициент полезного действия крайне мал, и поэтому они непригодны для получения сравнительно больших количеств электрической энергии.
В последние годы ученые всего мира напряженно трудились над созданием высокоэффективных преобразователей энергии солнечного света. Такие преобразователи часто называют солнечными элементами. Для их изготовления используют новые материалы полупроводниковой техники. Особенно больших успехов в создании высокоэффективных солнечных батарей добились советские ученые, которыми руководил недавно скончавшийся выдающийся деятель науки академик А. Ф. Иоффе. Коэффициент полезного действия солнечных элементов уже достаточен для того, чтобы их можно было применять в качестве источников электрической энергии для питания различных электрических и электронных устройств на спутниках Земли и на межпланетных станциях.
О том, как работают фотоэлементы подобного рода, невозможно здесь рассказать. Процессы, происходящие в кристалле полупроводника, используемого для создания солнечных элементов, очень сложны, и даже ученые поняли их достаточно полно совсем недавно. Для того чтобы их описать, пришлось бы предварительно рассказывать о многих важных физических понятиях, существующих в физике полупроводников. Суть же работы солнечных элементов сводится к тому, что ученые и инженеры нашли способы заставить освобождающиеся под воздействием света носители заряда двигаться не хаотически в самых разнообразных направлениях, а только в одном.
Тайна шифра
Вы, конечно, прекрасно представляете себе, как передаются телеграфные сообщения с помощью азбуки Морзе. Независимо от того, используется ли связь по проводам или по радио, оператор преобразует текст сообщения, каждую его букву, каждый знак в комбинацию электрических посылок различной длительности. В зависимости от скорости передачи длительность их меняется. Чем выше скорость передачи, тем она короче. Но при любой скорости передачи остается неизменным соотношение длительности посылок; тире длится в строго определенное количество раз дольше точки.