Выбрать главу

Небесная странница — комета. Ее хвост всегда направлен в сторону от Солнца.

Необычный вид и сравнительно редкое появление на нашем небосводе этих небесных странниц издавна привлекали внимание ученых к кометам. Предметом особого изучения явились их необыкновенные хвосты. Тем более, что их поведение казалось наблюдателям очень странным. Дело в том, что хвост кометы не тянется за ней, оставаясь постоянно сзади головной части, а всегда находится на прямой, соединяющей головную часть кометы и Солнце, и направлен в сторону, противоположную ему.

Знаменитый астроном Кеплер еще в начале XVIII века высказал предположение, что подобная ориентация кометных хвостов может быть объяснена тем, что солнечные лучи оказывают давление на освещенные тела.

Максвелл в своих теоретических исследованиях пришел к такому же выводу. Но на сей раз это была не просто блестящая догадка, а теоретическое положение, подкрепленное точными вычислениями. По расчетам Максвелла получалось, что отвесные лучи солнечного света давят на 1 квадратный метр абсолютно черной (совершенно неотражающей) поверхности с силой 0,4 миллиграмма, а на зеркальную поверхность — с силой 0,8 миллиграмма. Разумеется, сила светового давления зависит от мощности светового излучения и от расстояния между источниками света и поверхностью, на которую падают лучи. Чем мощнее источник, гем больше давление; чем больше расстояние, тем давление меньше. Поэтому цифры, приведенные выше, не являются абсолютными. Они вычислены для случая, когда источником света является Солнце, а расстояние равно тому, на которое Земля отстоит от него.

Факт светового давления имеет принципиальное значение для науки: он открывает завесу еще над одним очень важным свойством света. Поэтому экспериментальное доказательство правильности теоретических выкладок было бы чрезвычайно существенным вкладом в физику. Но такой эксперимент оказался до крайности сложным и трудоемким — ведь измерять приходилось ничтожные по величине усилия.

Первым, кому удалось провести эти тончайшие измерения, был профессор Московского университета Π. Н. Лебедев. В 1899 году он измерил давление света на твердые тела, а в 1909 году разрешил еще более трудную задачу — измерение давления света на газы.

Схема установки Π. Н. Лебедева. Ось с лопастями, нарисованная отдельно, подвешивалась в стеклянном цилиндре. На лопасти направляли свет яркой лампы. Под давлением света ось с лопастями поворачивалась на некоторый угол.

Эти работы принесли Лебедеву мировое признание; многие университеты и научные общества избрали его своим почетным членом.

Результаты исследований подтвердили факт светового давления и точность расчетов Максвелла. Основываясь на этом факте и исследованиях Лебедева, астрономы смогли точно изучать влияние солнечного света на хвосты комет и даже определять массу частиц, образующих хвосты. Не менее интересным и важным для науки явился вывод, сделанный астрономами, о том, что световое давление, возможно, устанавливает естественный предел для размеров звезд. Масса звезды не может превышать некоторой, хотя и громадной, но конечной величины, так как в противном случае световое давление раскаленных внутренних областей звезды взорвет ее изнутри.

Мы помним, что волновая теория победила корпускулярную только после того, как опытным путем были установлены такие факты, как дифракция и интерференция. Эти факты невозможно объяснить с точки зрения корпускулярной теории, зато волновая теория великолепно с ними согласуется. Что же в этом смысле можно сказать о световом давлении? Оно было выведено и исчислено Максвеллом, создавшим свою электромагнитную теорию на основе волновых представлений о природе света, и, следовательно, полностью подтверждает их справедливость. Однако факт светового давления относится к числу тех, которые не противоречат и корпускулярным представлениям. Более того, на основании опытов Лебедева сторонник корпускулярной теории может сделать вывод, что свет имеет массу, и даже определить ее величину!

Мельчайшие из мельчайших

Наука никогда не заняла бы подобающего ей места, если бы с самого зарождения не требовала глубокого осмысления и точного определения даже самых простейших, кажущихся совершенно очевидными понятий. Вот, например, определения[7] белого, прозрачного и черного тел, приемлемые для науки:

вернуться

7

Здесь не приводятся определения в строгой научной формулировке.