Теперь мы можем подойти к решающему этапу исследования фотоэффекта.
Что произойдет, если фотокатод освещать не белым светом, представляющим собой смесь лучей с различными длинами волн, а монохроматическим, то есть таким, в котором световые волны имеют практически одну и ту же длину?
Мы сами не сумеем провести опыт, отвечающий на подобный вопрос. Для такого опыта требуется очень сложное и дорогое оборудование, какого, конечно, не найти в школьном физическом кабинете. Но это не столь важно, потому что этот опыт проделывался учеными неоднократно.
К тому времени, когда он был проведен впервые, волновая теория света уже около девяноста лет прочно удерживала свои позиции. За эти годы сменилось не одно поколение физиков, и все они не сомневались в ее абсолютной достоверности, так как любые открытия в области оптики всегда удавалось правильно истолковать на основе волновых представлений. Каково же было удивление и даже недоумение ученых, когда они узнали о результатах исследования фотоэффекта при монохроматическом освещении! Они противоречили тому, что до сих пор не вызывало ни у кого сомнения.
Прежде всего оказалось, что свет не всякой длины волны выбивает электроны из фотокатода. Электроны покидали его тем охотнее, чем короче была волна падающего света.
Подавая на анод фотоэлемента отрицательное напряжение разной величины, удалось выяснить, что энергия вылетевших электронов, а следовательно, и их начальная скорость, остается неизменной при изменении интенсивности света и зависит только от длины волны. Чем больше синели лучи света, то есть чем короче была волна падающего света, тем большим нужно было устанавливать отрицательное напряжение на аноде, при котором полностью прекращался фототок. И, наоборот, чем длиннее были волны падающего света, тем меньшей оказывалась энергия освободившихся электронов. Более того, когда длина волны падающего света возрастала до некоторой величины, фотоэффект прекращался, как бы ни увеличивали при этом поток падающего света, как бы ни повышали положительное напряжение на аноде. Предельная длина волны, при которой прекращается фотоэффект, называется красной границей фотоэффекта. Она различна для разных веществ. Пришлось немало потрудиться, для того чтобы повысить красную границу, отодвинуть ее дальше, в область длинных световых волн. В наши дни созданы такие типы фотокатодов, которые имеют красную границу на длине волны 1,2–1,6 микрона.
На основании волновой теории следовало, что энергия выбитых светом электронов должна возрастать при увеличении светового потока. Опыт же показывает иное: при увеличении светового потока растет не энергия выбитых из фотокатода электронов, а их число. Энергия покинувших фотокатод электронов становится тем большей, чем короче длина волны падающего света.
Открыв фотоэффект, ученые вновь оказались вынужденными обратиться к основам физической оптики, искать ответа на самый главный вопрос: «Что же такое свет?»
Вместо паузы
Перед окончанием главы сделаем небольшую передышку, оглянемся на прочитанное и вспомним главное из того, что нам стало известным о свете.
1. Развитие оптики до Ньютона.
На этом этапе еще не было создано сколько-нибудь достоверных теорий света. Не было накоплено и достаточного количества фактов, хотя уже были созданы такие оптические приборы, как линзы, вогнутые зеркала и даже микроскопы и телескопы.
Гримальди опубликовал свой труд, в котором не было сформулировано глубоких теоретических положений, но зато впервые, в очень приближенной форме, были упомянуты явления дифракции и интерференции.
2. Ньютон.
Его работы явились целой эпохой в оптике. Он открыл новые факты и на основании их сформулировал очень важные законы оптики и создал первую подлинно научную теорию света. В соответствии с этой теорией, свет представляет собой частицы материи особого рода — корпускулы.
Эта теория достаточно хорошо объясняла все известные факты, за исключением явления, открытого самим Ньютоном, называемого кольцом Ньютона (и, конечно, интерференции и дифракции, которых Ньютон не знал).
3. Гюйгенс.
Определение скорости света Рёмером.
Гюйгенс создал свою теорию немногим позже Ньютона. В соответствии с теорией Гюйгенса, свет не является материальным телом, а представляет собой волны, распространяющиеся в материи особого рода — в мировом эфире.
4. Господство корпускулярной теории.