Светящаяся газовая туманность.
Предел увеличению телескопа ставит явление дифракции. Оно сказывается тем сильнее, чем меньше диаметр объектива и чем больше увеличение. Практически наилучшее увеличение даже в очень крупных инструментах не превышает 800 раз. В некоторых случаях наблюдатели сознательно прибегают к удвоению и даже учетверению этой цифры, но количество различимых деталей при этом не повышается. Меняются лишь условия наблюдения, что иногда бывает удобнее для работы. Явление дифракции очень хорошо видно на фотографии Сириуса. Лучи, отходящие от этой звезды, являются следствием дифракции света. На самом же деле их нет.
«Острота зрения» телескопа с диаметром зеркала 508 сантиметров в 1200 раз выше, чем у глаза. Это означает, что наименьший объект, форму которого еще можно различить, должен иметь угловой размер не менее 0,05', что на поверхности Луны будет соответствовать линейному размеру 50 метров, а на поверхности Марса — 8 километрам. Можно видеть и меньшие предметы, но форму их определить окажется невозможным: круг, квадрат, прямоугольник или любая другая фигура при этом становятся неотличимыми друг от друга, представляя собой некие расплывчатые пятнышки. Наибольшее полезное увеличение 508-сантиметрового рефлектора, как мы уже говорили, равно примерно 1200, но поле четкого зрения у него очень мало — всего лишь 0,25° в поперечнике; в него не поместится целиком даже Луна.
При чрезмерно большом увеличении наблюдению светил начинает препятствовать явление дифракции. На снимке приведено изображение Сириуса; лучи, расходящиеся в стороны, возникли за счет дифракции.
Предел увеличению ставит и яркость наблюдаемых объектов. При повышении увеличения яркость изображения в телескопе будет падать. Это и понятно — ведь количество фотонов, попадающих в глаз или на пластинку, определяется только яркостью самого объекта, расстоянием до него и диаметром объектива телескопа, но не зависит от увеличения. С ростом же увеличения растет размер изображения, и то же самое количество фотонов должно будет распределиться на большей площади. Следовательно, на каждое зернышко эмульсии или на каждую светочувствительную клетку на сетчатке глаза придется меньшее количество фотонов. Такое падение освещенности фотопластинки или сетчатки при наблюдении объектов малой яркости может оказаться недопустимым[27].
Если первые две причины, ограничивающие увеличение, определялись диаметром телескопа, то есть так или иначе зависели от человека, то третья, весьма существенная причина имеет совсем иную природу и совершенно не подчиняется нашей воле. Эта причина — состояние атмосферы.
В контейнере установлены два телескопа: большой — для фотографирования светил, а с помощью малого телескопа и специального автомата осуществляется наводка большого телескопа на заданное светило (малый телескоп спереди).
Оказывается, наша атмосфера не столь уж прозрачна и однородна, как мы привыкли считать. И дело вовсе не только в облаках, туманах и пыли. Есть другие не менее неприятные помехи для астрономических наблюдений. Речь идет о тех малозаметных мельчайших изменениях плотности атмосферы, которые обычно можно наблюдать над разогретыми поверхностями: над асфальтовой лентой шоссе, над большими полями или над степью. Если смотреть сквозь толщу воздуха над такими поверхностями, то мы увидим, что воздух струится и дрожит от мелких токов, словно густой сахарный сироп, растворяемый в воде.
Такие колебания атмосферы, даже выраженные в гораздо меньшей степени, — страшные враги астрономов. Они мешают им вести наблюдения, потому что приводят к непрерывным и неконтролируемым изменениям резкости изображений небесных тел. Они сказываются тем сильнее, чем больше увеличение телескопа. Поднимать его выше определенной величины нет смысла — изображение от этого только ухудшится. Чтобы избавиться от таких помех, астрономы поднимаются высоко в горы, где воздух не только чище, но и гораздо спокойнее. Так, в СССР Абастуманская и Бюраканская обсерватории построены в горах на высоте 2000 метров над уровнем моря.
Атмосфера Земли создает и другие помехи — она оказывается неодинаково прозрачной в различных участках спектра. На некоторых длинах волн она поглощает почти весь свет. И это свойство атмосферы очень мешает астрономам при исследовании спектров Солнца и звезд. До последнего времени астрономам приходилось бороться с этой трудностью только косвенными методами. Но несколько лет назад в иностранных журналах появилось сообщение, что американским инженерам удалось помочь ученым: они сумели поднять телескоп над атмосферой. Такой подъем осуществляют двумя способами.
27
Не следует забывать, что все эти рассуждения относятся только к случаю наблюдения объектов первой категории. При наблюдении объектов второй категории, которые представляют собой точечные светящиеся тела, об увеличении нет смысла говорить. Можно лишь интересоваться дальностью видимости точечных источников света. Как мы помним, глаз может заметить свечу (теоретически) на расстоянии 30 километров. При использовании 500-сантиметрового телескопа это расстояние достигнет 18 750 километров. Но при этом мы не увидим ни свечи, ни язычка пламени — мы увидим только светлую точку. Но разрешающая способность важна и в этом случае: чем она больше, тем легче удается различить отдельные звезды в скоплениях.