Выбрать главу

Мы рассказывали о микроскопе «МИК-1». В нем тоже применен преобразователь. Но его с успехом используют не только в микроскопии — астрономы включили преобразователь в число орудий астрономических исследований. На этот раз не столько для преобразования невидимых лучей в видимые, сколько для усиления яркости слабых звезд.

Известно, что фотографирование с экрана электронно-оптического преобразователя позволяет сократить экспозиции примерно в 50—100 раз. Электронно-оптический преобразователь (в данном случае его лучше было бы называть электронным усилителем света) в сочетании с 500-сантиметровым телескопом поможет увидеть звезды на таких расстояниях, которые без него были бы доступны только 50-метровому телескопу. Постройка таких телескопов в наше время невозможна. Но, даже если бы удалось создать такой телескоп, это обошлось бы страшно дорого. Преобразователь же очень дешевый прибор, с его помощью можно добиться такого же результата[33].

И еще одним замечательным свойством обладает электронно-оптический преобразователь. Если в его конструкцию ввести специальный электрод, то можно, подавая на него отрицательное напряжение, перекрывать путь электронам и тем самым «запирать» или закрывать преобразователь, подобно тому, как это делают со световыми лучами фотографические затворы. Самые лучшие затворы в современных аппаратах не способны давать экспозиции много меньше тысячной доли секунды. Такая выдержка позволяет фотографировать многое, но в научной фотографии для изучения очень быстро протекающих процессов часто требуются выдержки в миллионные доли секунды. Ни один механический затвор не в состоянии открыться и закрыться за такое короткое время. И тогда-то приходят на помощь электронные затворы — электронно-оптические преобразователи.

Винтовка с инфракрасным прожектором и инфракрасным прицелом. В коробке — источник электрического тока. Внизу — инфракрасная подзорная труба, тот же прицел и инфракрасный прожектор.

Судьба затерявшихся фотонов

Читая о фотоэффекте, вы, вероятно, уже задумывались над тем, почему не каждый фотон, имеющий необходимую энергию, выбивает электрон, и, наверное, пытались понять судьбу тех фотонов, которые, попав в фотокатод, так и остались в нем, не дав полезного результата.

Коротко ответить на эти вопросы, пожалуй, нельзя. Поэтому те, кто хочет подробнее разобраться в этом, должны обратиться к помощи других книг. Здесь же стоит ограничиться наикратчайшим и довольно приблизительным объяснением этого факта. Оно сводится к упоминанию о двух важных обстоятельствах. Первое заключается в том, что некоторые из электронов, выбитых фотонами, двигаясь в пространстве кристаллической решетки вещества фотокатода, сталкиваются с другими свободными электронами. При столкновении они отдают часть своей энергии, и оставшейся уже не хватает, для того чтобы покинуть фотокатод. Другая причина — это то, что фотоны не всегда отдают свою энергию свободным электронам. Иногда они отдают ее электронам, связанным с атомами. Для того чтобы выбить такие электроны, требуется значительно большая энергия, чем та, которой обладают далеко не все фотоны.

Казалось бы, с такими потерями необходимо примириться. Но ученые нашли методы, позволяющие использовать и те фотоны, которые ранее считались невозвратно пропавшими. Открыв эти методы, они создали фотоэлементы совершенно нового типа. Их называют фотоэлементами с внутренним фотоэффектом.

Такое название говорит само за себя. Слова «внутренний фотоэффект» показывают, что в таких фотоэлементах протекание тока обеспечивается не теми электронами, которые покинули поверхность облучаемого вещества, а теми, которые, получив от фотонов энергию, покинули лишь атомные орбиты и свободно перемещаются в пространстве кристаллической решетки. Для того чтобы выбить электрон с атомной орбиты, требуется меньше энергии, чем для того, чтобы заставить электрон вообще покинуть поверхность облучаемого вещества. Именно поэтому в новых фотоэлементах удалось повысить чувствительность. В таких фотоэлементах почти каждый фотон, имеющий достаточную энергию, освободит электрон и позволит ему переносить заряд, то есть проводить ток. Не менее важно и то, что величина необходимой энергии фотонов при внутреннем фотоэффекте может быть меньшей, и поэтому красная граница внутреннего фотоэффекта достигает значительно больших длин волн.

вернуться

33

Если, конечно, не учитывать того, что в 50-метровом телескопе разрешающая способность была бы значительно выше, так как влияние дифракции в нем уменьшилось бы.