Рис.7. Последовательность создания "пустой" диаграммы Пенроуза
Собственно алгоритм построения сеток достаточно прост. Для удобства поворот сеток производится сразу же, в момент их построения. Поскольку алгоритм прост, приведем его в неформальном виде, в виде словесного описания:
Цикл 1: Для каждого –М < t < +M c шагом T
Цикл 2: Для каждого –М < r < +M c шагом R
Вычислить u = arctg(t + r) и v = arctg(t – r)
Повернуть полученную точку a(u, v) на 45 градусов по или против часовой стрелки (зависит от назначения линий сетки – время или расстояния)
Вывести полученную точку а(u, v) на координатную плоскость
Конец Цикла 2
Конец Цикла 1
Буквой М названа условная бесконечность, то есть, число большое, но не превышающее возможностей вычислительной системы (компьютера). Шаг T подбирается из соображений частоты линий на диаграмме. Слишком много линий просто затемнят картину. Из этих же соображений цвет линий сетки выбран ярко-бирюзовым. На его фоне линии другого цвета (мировые линии) просматриваются вполне отчетливо.
Теперь на диаграмму можно вывести любые события и мировые линии. Для этого используется точно такой же алгоритм, но только его "внутренняя часть", без циклов. По требуемой функциональной зависимости мы выводим последовательность точек a(u, v) (с поворотом!) и при необходимости соединяем их отрезками линий. Частота вывода линий – это темп реального хода времени, если мы создаем анимацию. Интервалы, очевидно, должны быть достаточно малыми, чтобы была незаметна ломаная структура линий. На рис.7 дискретность каждой дуговой линий составляет R=800, поэтому они выглядят как гладкие кривые. Для наглядности на анимации добавлена ещё одна линия – линия настоящего t = tнаст. У нас она обычно окрашена в оранжевый (горчичный) цвет. Мировые линии событий могут иметь произвольные цвета. Мировые линии света и тахионов имеют предпочтительные цвета – красный, малиновый.
Динамические диаграммы Пенроуза
Теперь, имея уравнения преобразования координат, мы можем изобразить на диаграмме Пенроуза любую мировую линию. Для этого нам нужно знать только уравнение её движения r(t). Более того, мы можем нарисовать последовательность диаграмм для каждого момента времени по этим уравнениям и соединить их в анимацию, динамическую последовательность кадров. Пример кадра такой анимации для четырех разных мировых линий изображен на рисунке:
Рис.8. Мировые линии на динамической диаграмме. Анимация: http://samlib.ru/img/p/putenihin_p_w/diapen242/fig08.gif
На кадре из динамической диаграммы изображены четыре произвольные мировые линии, имеющие начало в момент времени t = ‑20, где размерность времени может быть произвольной, как указано выше. Две из линий – светоподобные и соответствуют лучам света, испущенным в точках r = 1 и r = 5, причем размерность расстояния соответствует размерности времени. Другими словами, если расстояние измеряется в световых годах, то время – в годах; если время в минутах, то расстояние – в световых минутах и тому подобное. Для каждой мировой линии на рисунке приведены их уравнения, а на диаграмме цвет линии соответствует цвету названия функции.
Понятно, что в динамике мировые линии могут начинаться в любой точке диаграммы ниже линии настоящего, а заканчиваться должны на ней. Никаких событий выше линии настоящего не может быть, только ожидаемые, предполагаемые, которые могут произойти в будущем.
Как видно на динамической диаграмме, мировые линии пересекаются. Это означает, что испущенные световые лучи или времениподобные объекты (тела) встречаются в одной точке одномерного пространства-времени, двигаясь вдоль одной линии. Столкновение тел или поглощение лучей определяется тем, в каком направлении они движутся, что можно явно вычислить по уравнениям их мировых линий.
В качестве примера попробуем задать уравнение мировой линии такое, чтобы она проходила вблизи центра диаграммы. Как и в полярных координатах, на этой диаграмме изображено всё существующее пространство-время: и видимая Вселенная, и вся Вселенная за видимым горизонтом, от Большого Взрыва и до конца нашей реальности, ничто не может быть изображено вне диаграммы.