А если говорить про электродвигатели, то у нас, в нашей стране, сейчас разрабатывается очень хороший проект, на 2007-й год он нацелен. Его разрабатывают 4 организации, это МПО имени Лавочкина, ИКИ, Геохим, институт имени Виноградова бывший, и, наконец, наш Институт прикладной математики – вот как раз показывают нужный слайд.
Это очень интересный проект – полёт за реликтовым веществом к Фобосу. И вы можете увидеть на слайде эти большие солнечные батареи. Они создают энергию, которая разгоняет рабочее тело, нейтральный газ, ионизирует его за счёт электрических сил, разгоняет до больших скоростей. Потом для того, чтобы этот объект не зарядился (если вылетит заряженная частица, останется заряд в самом корабле), он отбирает, сажает назад эти отобранные электроны в ионы, и уже эти атомы, превратившись снова в нейтральные, улетают с большой скоростью.
И вот эта тяга позволяет долететь до Марса, сесть на Фобос, затем взять там грунт и вернуть его на Землю. Причём полёт к Марсу с возвратом к Земле для человека крайне неприятен тем, что для того чтобы лететь назад на Землю, на Марсе около года надо ждать, пока Марс и Земля займут такую позицию, когда можно лететь с Марса на Землю. А вот на малых тягах не надо ждать, потому что аппарат медленно разгоняется, и время уходит как раз на разгон, и аппарат возвращается к Земле, когда надо, причём с вопросами точности всё получается хорошо. Вот так работают электрореактивные двигатели.
А.Г. Вопрос к вам как к баллистику, а к вам как практику. Скажите, пожалуйста, вот даже когда американцы в автоматическом режиме сажали «Аполлон» на Луну, и то задержка в 2 секунды создавала достаточно большие проблемы. Сигнал идёт секунду туда, секунду обратно, за это время картина уже меняется. Какова задержка при полёте на Марс или на Фобос? Как сажать в автоматическом режиме?
А.П. Да, мы этим подробно занимаемся. Во-первых, американцы сажали не в автоматическом режиме. Сажал Армстронг, и это намного проще, чем сажать так, как мы сажали.
Г.Г. Начали посадку автономно. Не с Земли сажали, а автономно.
А.Г. Это одиннадцатый…
А.П. Там сидел лётчик, профессионал, и он сажал как надо. А вот наши системы сажались автоматически. Но они, опять же, сажались по той информации о дальности и скорости, которая поступала к ним от трех лучей радиолокатора.
Г.Г. Земля не участвовала, поэтому задержек минутных не было. Это всё автономно на корабле происходило.
А.П. Но тем не менее, Марс – это задержка сигнала от 4 до 40 минут. И всё-таки эти системы, хоть они автоматические, но Земля их подробно поддерживает. Без поддержки Земли ничего невозможно. Вообще-то говоря, все марсоходы имеют всего лишь 5 команд: вперёд, назад, направо, налево и вызов Земли. Вот вызов Земли – это на случай, когда что-то неизвестно.
И это замечательная задача для науки, для теории управления – как управлять автоматическим объектом, но в то же время дистанционно управляемым, с большими задержками в канале связи. Он должен быть настолько автоматическим, чтобы решать свою задачу сам, и в то же время человек должен иметь возможность вмешаться.
Наши сотрудники замечательно управляют роботами через Интернет, с задержками передачи информации, соизмеримыми, в общем, с теми, что на Марсе. И там как раз отрабатываются эти двухуровневые системы: внизу автоматическая и человечья где-то на другом конце.
Г.Г. Практически мы выходим на задачу создания искусственного интеллекта – уровни, подуровни…
А.П. Да, искусственный интеллект – это серьёзная вещь, конечно.
Вот Марс, посмотрите. Набор камней. Пустыня такая же, как на том полигоне, с которого мы делали запуски на Марс.
Г.Г. Да, или как на Камчатке…
А.П. Да, когда мы услышали, что американцы сфотографировали Марс, мы были на том полигоне в районе Байконура, и я спросил: «Ну, и что же там?» А мне говорят: «Такая же пустыня, как и здесь».
Вот, видите, условия жизни на Марсе – ноль градусов в самом хорошем случае, и, говорят, что иногда бывает 10, где-то в районе экватора. А так минус 60, минус 100, и атмосфера, как на высоте много десятков километров, 5 миллибар. Плюс – пыльные бури.
А.Г. Вот я и спрашиваю: что же должно произойти на Земле такого, чтобы мы спасались на Венере, где 500 градусов, на Марсе, где минус 100 или на Луне, где нет атмосферы?
А.П. На Венере мы не будем спасаться. Венера нам должна показать, на самом деле, как избавиться от того, что на ней – парниковый эффект и так далее.
Г.Г. Венера – это такая страшилка, чтобы человечество поняло, что к чему.
А.П. А спасаться можно на Луне, поэтому говорят о лунной базе. Может быть, на Луне человечеству надо спасаться… А потом ведь есть ещё одно обстоятельство. Народонаселение растёт – сейчас уже 6 миллиардов. И не похоже, чтобы тут что-то менялось. Правда, Римский клуб и некоторые другие модели предсказывают где-то в 2017-м году, плюс-минус 2 года, полный коллапс, потому что не будет хватать ресурсов, загрязнение среды и так далее, и народонаселение должно уменьшаться. Но в конце концов, из-за того, что человечество растёт, ему надо будет расширяться. И будет освоена, в конце концов, может быть, и Луна. Если человечеству придётся где-то когда-то искать убежище, то к этому надо быть готовым, хотя бы на уровне бумажных проектов и каких-то их первых реализаций.
Г.Г. Есть ещё одна интересная идея, которую я не сразу понял. Оказывается, если на орбите вокруг Земли находится завод и его надо снабжать сырьём – то с Луны снабжать сырьём его проще и дешевле, чем с Земли. Потому что Луна меньше, и разгонять надо меньше.
А.П. Это проект российского специалиста, он опубликован в журнале «Земля и Вселенная».
Г.Г. Очень так неожиданно.
А.Г. Но всё-таки, в ближайшие годы чего вы реально ждёте от космоса, особенно учитывая ситуацию с шаттлом, с МКС, с тем, что у нас появилась некая перспектива монополии по доставке космонавтов и грузов на орбиту?
Г.Г. Ну, это не серьёзно. Это продлится полгода, год, а потом всё вернётся на свои места. Это просто некая аварийная ситуация, и мы будем доставлять туда не трех космонавтов, а двух, они будут только обслуживать станцию, наука пока остановится, а потом всё вернётся. Европа делает спасательный корабль. Никакой монополии не будет. Так что это временные трудности.
Но эти трудности показывают, что как ни старались доказать, что многоразовые корабли лучше, а в этом практическом споре победили одноразовые. Потому что одноразовый корабль каждый раз новый, свежий. А «Колумбия» летала 20 лет. Вот я трижды спускался из космоса на Землю – это тряска, это бешеные перепады температур. И как можно было 20 лет эксплуатировать этот корабль, забывая, что он каждый раз проходит через ад? И не зря специалисты говорили, что их пора уже остановить, в частности, «Колумбию», и чуть ли не до президента пытались добраться, чтобы остановить их эксплуатацию.
Так что многоразовые корабли хотели сделать дешевле, а получилось дороже, а сама многоразовость сейчас повернулась своей обратной стороной.
А.П. Так или иначе, я думаю, будет развиваться околоземной космос, будет развиваться станция, с её посещением и жизнью на ней. И, конечно, будут развиваться полностью автоматические системы дальнего космоса. И они принесут, они и сейчас уже приносят очень много интересного. Сейчас ищут жизнь на спутнике Юпитера Ио, потому что он покрыт льдом, и за несколько пролётов обнаружили, что это действительно лёд, он ломается притяжением Юпитера, и видно, что это под ним океан, а значит вода, значит, жизнь.
Г.Г. А жизнь там ищут, потому что на Земле жизни нет. Разве это жизнь?
А.П. Это верно. Но с другой стороны, найти жизнь где-то ещё, хоть какую-то, это значит сильно продвинуть науку. И конечно, будет развиваться именно космическая робототехника, я в этом глубоко убеждён. Она, с одной стороны, а) интересна; б) нужна. И мысль работает, и будут результаты. Я не знаю, будет ли это лунная база или будут это более умелые космические аппараты. Потому что есть задачи, которые только автомат может решить. Когда человек не может работать? Когда он слишком быстро должен действовать или когда слишком долго и это одно из обстоятельств, почему человек, так сказать, должен меняться с автоматом.