Выбрать главу

И это, собственно, выглядело очень удивительно, потому что считалось, что нуклеотидный состав РНК должен отражать состав ДНК. И коль скоро оказалось, что отсутствовала такая прямая корреляция, стало ясно, что основная масса РНК несёт какую-то другую функцию. Не участвует непосредственно в переносе информации от ДНК к белку. С другой стороны, когда они построили график состава нуклеотидов в РНК и сравнили с составом ДНК в разных бактериях, стало ясно, что существует слабая корреляция. То есть, отсюда следует, что существует небольшая фракция РНК, которая действительно соответствует ДНК и которая является переносчиком информации между ДНК и белками, но при этом основная масса РНК, очевидно, выполняла какую-то другую функцию – структурную или функциональную. И на самом деле отсюда, по-видимому, стоит начать отсчёт этой истории со всякими нетрадиционными функциями РНК, которая, в конце концов, привела к идее рибозимов и идее РНК-мира.

Но здесь, я думаю, стоит сначала обсудить, откуда взялась идея рибозимов и РНК-ферментов. Я, когда был ещё студентом, собственно, наблюдал всю эту историю с самого начала. Потому что это всё произошло сравнительно недавно, в начале 80-х годов. Я тоже интересовался происхождением жизни и в какой-то момент понял, что на самом деле центральным вопросом в происхождении жизни является вопрос о том, как нуклеиновые кислоты, информация, которая находится в нуклеиновых кислотах, переводится в информацию белковую. И возникла тогда такая идея, что, возможно, те белки, которые устанавливают соответствие между аминокислотами и нуклеотидами, на самом деле являлись не чисто белками, а состоят из белковой части и нуклеиновой части. И я стал собирать информацию о разных ферментах, которые были белками, но при этом содержали в себе нуклеиновые кислоты. И в литературе было несколько таких примеров.

Во-первых, Сидни Олдман в Йельском университете показал, что есть такой фермент, который специфически расщепляет определённую РНК и этот фермент состоит из белковой части и части, представленной РНК. Тогда этому большого значения никто не придал, но, тем не менее, были такие данные. Потом в Институте биохимии имени Баха Анна Николаевна Петрова изучала фермент амилаза. Это ветвящийся фермент, который ответственен за формирование гликогена. И тоже обнаружилось, что этот фермент в своём составе содержит РНК. В самом начале 80-х годов появилась работа Томаса Чака, который показал, что есть РНК, которые могут сами себя разрезать. И, собственно, это было открытием ферментативной активности у РНК.

И с тех пор было показано, что существует очень много разных ферментов, разных информативных активностей у РНК. То есть, стало очевидным, что РНК может обладать теми же свойствами, что и белки. И на самом деле здесь самое интересное следствие это то, что история с открытием рибозимов или РНК-ферментов привела к совершенно новой концепции происхождения жизни. Поэтому, я думаю, сначала стоит обсудить, какие вообще существовали теории происхождения жизни, и как открытие РНК-ферментов преобразило эту область. Наиболее научная теорией происхождения жизни была теория Александра Ивановича Опарина, которую он высказал в 20-е годы.

На этой картинке вы видите общую схему концепции Опарина. Он предполагал, что аминокислоты могут собираться в полипептиды, полипептиды могут собираться в белки. И далее эти белки могут агрегировать в так называемые коацерваты. И идею эту он заимствовал из коллоидной химии. Центральной идеей Опарина было то, что на каком-то этапе эволюции белки или какие-то сложные полимеры смогли обособиться от окружающей среды. И возникла идея этих коацерватов, то есть таких капель внутри раствора коллоидных частиц, которые могли накапливать различные биополимеры и могли расти, и могли как-то делиться. Но центральной проблемой здесь являлась проблема наследственности. Если даже какая-то новая функция возникла в таких каплях, непонятно, как она могла сохраниться, как она могла передаться потомству. Даже если эти капли могли расти и делиться. И, конечно, в общем-то, Опарин считал, что центральную роль в эволюции этих первых протоклеток играли белки, потому что в то время считалось, что только белки могут обслуживать метаболизм, могут выполнять каталитические функции. Но белки, к сожалению, не могут в отличие от нуклеиновых кислот. Поэтому когда обнаружили, что РНК может тоже выполнять те же функции, что и белки, катализировать химические реакции, ферментативные реакции, то, соответственно, сразу возникла идея, что, может быть, жизнь началась не с белков, а именно с РНК.

И вот в последние годы академик Спирин разработал новую концепцию происхождения жизни, в которой он сделал ряд предположений о том, как молекулы РНК могли, в конце концов, самоорганизоваться до такого уровня, чтобы стать живыми клетками.

Александр Гордон: Да, только у меня сразу возникает вопрос: а куда тогда девать ДНК, если РНК может выполнять функции и ДНК и белка – саморепликацию и ферментативную деятельность?

А.Р. Здесь так же, как с белками. То есть, РНК может выполнять и репликативные функции и ферментативные функции, но ферментативные функции белки выполняют лучше. То же самое и с ДНК. Для хранения генетической информации ДНК лучше.

А.Г. Чем РНК?

А.Р. Да.

А.Г. Но, в принципе, РНК…

А.Р. В принципе, РНК может делать то, что ДНК, и то, что белки.

А.Г. Вернёмся к спиринской теории возникновения жизни. Не очень понятно, с чего всё началось, то есть каким образом возникла РНК и реплицировала сама себя.

А.Р. Очевидно, что в какой-то момент должны были возникнуть рибонуклеотиды. И хотя существует масса опытов, где было показано, что абиогенно можно получить простейшие аминокислоты, можно получить довольно сложные органические соединения, но всё-таки нуклеотиды никто не смог получить абиогенным путём. Поэтому всё это ещё остаётся загадкой. Но, по крайней мере, здесь нет никаких принципиальных проблем, можно вполне себе представить, что это могло произойти. Мы просто не знаем, как это происходило. Потом в следующий момент эти нуклеотиды должны были соединиться в полимерную цепь, должны были образоваться олигонуклеотиды, которые потом должны были удлиняться. Здесь существует ряд проблем.

Во-первых, непонятно, как синтезировались нуклеотиды. Непонятно, как эти нуклеотиды соединялись друг с другом, как образовывались олигонуклеотиды. И, наконец, очень важная проблема: непонятно, откуда бралась энергия. Дело в том, чтобы такая система устойчиво работала, необходимо постоянное поступление энергии. Потому что даже если у вас случайно в какой-то момент синтезировался олигонуклеотид, но если у вас нет механизма подачи энергии, то вы не можете такую реакцию повторять многократно. Поэтому существует проблема нуклеотического цикла. Сразу скажу, что чётких ответов на эти вопросы нет. Хотя некоторые недавние работы, проведённые в Институте белка Александром Четвериным, как раз дают, по крайней мере, ответ на вопрос: как могли бы образовываться длинные полинуклеотиды и как они могли эволюционировать.

Четверин показал, что существует спонтанная реакция – рекомбинация. То есть в растворе молекулы РНК могут обмениваться своими участками. И в результате они могут удлиняться. И вот это, в принципе, объясняет, как могли бы образовываться длинные молекулы РНК. И, кроме того, из-за того, что молекулы РНК могут постоянно спонтанно обмениваться своими участками, также можно объяснить, как могли возникнуть разные варианты РНК. То есть, как могла возникнуть не просто информация, а полезная информация, но с продолжением.

Конечно, здесь надо допустить, что был какой-то механизм селекции, отбора таких молекул. По крайней мере, можно сейчас себе представить, что, в принципе, могли как-то абиогенно образоваться нуклеотиды, они могли собираться в более длинные нуклеотиды. И такие нуклеотиды могли эволюционировать.

Другое интересное открытие тоже было сделано лабораторией Четверина. Было показано, что РНК могут образовывать колонии. Вот также как микробиологи выращивают колонии бактерий, то точно также можно вырастить колонии РНК. Можно из одной молекулы РНК вырастить с помощью фермента, который будет считывать копии этой молекулы РНК, целую колонию РНК. Более того, поскольку сейчас уже известно, что таким ферментом может являться сама РНК, то можно вполне себе представить, что могут расти колонии РНК, катализируемые самими РНК. Это изображено на следующей картинке.