А.Г. Продолжение сразу после рекламы… Пожалуйста.
В.А. Да, всё-таки, конечно, проблема возникновения жизни – это невероятно интересная, очень интригующая, очень непонятная проблема.
Р.К. И тяжёлая.
В.А. Но тяжёлая не по решению, тяжёлая по постановке задачи. Вот в чём всё дело.
Р.К. Дело в выборе подходов.
В.А. Как говорил академик Владимиров (и Виталий Иосифович Гольданский, кстати, говорил то же самое): «Учёные полжизни тратят на постановку задачи. После того как вы поставили задачу, вы испытываете блаженство, купаясь в море чётко сформулированной мысли».
В данном случае, конечно, мне представляется, что самая захватывающая часть этой задачи связана с катастрофой ошибок, парадоксом Левинталя, то есть с тем, что мы называем «переходом к непреодолимой сложности». Я, Рэм, хочу пофантазировать… Не пофантазировать, а, в конце концов, поговорить вот на какую тему.
Ведь мы же всё прекрасно понимаем, насколько сильно живое отличается от неживого. А в чём, собственно, различие? Репликация? Пожалуйста, повторили на маленьких молекулах. Органические соединения? Пожалуйста, сделали их естественным путём. В чём, тем не менее, это ощущение совершенно непреодолимого конфликта, непреодолимой пропасти? В сложности? Определите, что такое сложность! В уникальности? «Это не может появиться, потому что это не может появиться никогда». Да, мы уже близки к этому. К тому, что перед нами нечто, что само по себе повторить невозможно. Вот это и есть катастрофа ошибок. Это и есть парадокс Левинталя. И мне кажется, это центральная проблема, которая, если будет атакована правильным образом и если будет найден способ решения, тогда только мы сможем сделать хоть какой-то шаг в направлении создания осмысленной теории эволюции. Я думаю, что на решение этих проблем, в химии – тоже, и в физике – тоже, конечно, нужно потратить большие усилия. Я мечтаю создать центр, где бы можно было бы собрать людей…
Р.К. Вот кристаллограф Гавеззотти в одном из обзоров построил образ идеальной лаборатории такого типа. Она требует, по его расчётам, три миллиона долларов. И потом по миллиону долларов в год.
В.А. Да нет.
Р.К. Владик, никуда не денешься.
В.А. Нет, это как-то совершенно неправильно. Хотя мы говорим сейчас уже не о науке, а о её организационной стороне…
Р.К. Но ты же поставил задачу уже…
В.А. Нет, нет. Наука не требует больших денег, это неправильно.
Р.К. Это разве большие деньги?
В.А. Конечно, три миллиона долларов – это большие деньги.
Р.К. Для такой проблемы?
В.А. Нет, наука не требует больших денег, идеи не требуют больших денег. Технологии – да. Мир идёт по пути развития научных технологий только для того, чтобы приблизить их непосредственно к рынку, это стоит дорого. Но научные идеи и создание среды, в которой могли бы генерироваться научные идеи, это стоит недорого. И не надо пугать людей.
А.Г. Но стоят достойного уровня жизни учёного.
В.А. Абсолютно правильно, достойного уровня, но не жизни, а как вам сказать… Просто должна быть некая среда, в которой ты ощущал бы себя достойно. Вот собственно и всё. Речь идёт о среде. Ну, ладно, это, так сказать, детали…
Живая и неживая материя
Участники:
Мстислав Владимирович Крылов – доктор биологических наук
Михаил Наумович Либенсон – доктор физико-математических наук
Мстислав Крылов: Эволюция живой и неживой материи подчиняется одним и тем же концептуальным законам физики и химии. И поэтому мы вместе с доктором физико-математических наук Михаилом Либенсоном решили разработать эту проблему на двоих.
Наверное, ты начнёшь, расскажешь, как возникла Вселенная, об инфляционной гипотезе, о большом взрыве, а потом я уже перейду к тому времени, когда начала формироваться естественная материя и живые организмы.
Михаил Либенсон: Спасибо за такую возможность. Я должен сказать, что, хотя я знаком с общим взглядом на Мир, основанным на теории Большого Взрыва, с тем, как возникла и развивается Вселенная, я не являюсь глубоким профессионалом в этой области. Я читаю лекции «Концепции современного естествознания» студентам одного из вузов Петербурга. И очень этой темой интересуюсь. Но, поскольку здесь претензий на какие-то новые вещи у нас нет, я просто напомню, что, согласно теории Большого Взрыва, Вселенная возникла как флуктуация, и первоначально, в первый момент, который и определить-то трудно (потому что я дольше говорю, чем это состоялось), плотность исходного вещества (Вселенная возникла из сингулярности) была чудовищной – 10 в 97-й степени грамм на кубический сантиметр, а температура – 10 в 32-й степени градусов, Кельвина, или Цельсия (тут неважно, в чём определять), а дальше началось стремительное расширение того, что образовалось, и температура падала. А то, что образовалось, начало стремительно меняться, преобразовываться. И проходило некоторые стадии. Эти стадии в течение первых трех минут прошли так много ступеней эволюции, что изучение их ещё только, так сказать, начинается. Если перечислить только, то сначала получилось нечто с огромным отрицательным давлением, и, согласно общей теории относительности, такая вещь не могла быть устойчивой. Из неустойчивости получилось то, что уже стало после расширения обычным веществом. Но там присутствовала огромная доля излучения. И то, что известно из физики элементарных частиц, позволило понять, что потом, спустя ничтожные доли секунды, получились первые барионы, а через очень короткое время пошло образование ядер. И на протяжении долей секунды образовались первые ядра самых лёгких элементов – водорода и гелия. Образование же тяжёлых элементов, кирпичиков хорошо нам знакомого вещества, произошло уже гораздо позже и длилось не доли секунды, а миллионы лет. И за это время то, что возникло, охватило огромные области. Но к этому мы ещё вернёмся, когда появятся картинки, а пока коснёмся вот чего. Главный и очень важный момент для общего нашего рассказа в том, что мы увидим серьёзные усложнения системы, которая возникла как некая неоднородность.
Усложнение – это очень важное свойство мира, который продолжает расширяться, оставаясь неравновесным и сугубо нелинейным, по оценкам, уже 12-15 миллиардов лет. Вот что можно сказать во вступлении о неживой природе.
М.К. Ну что же, расширяющейся Вселенной свойственна неравновесность. И многие процессы, протекающие во Вселенной, неравновесны, в том числе и жизнь. Жизнь можно охарактеризовать как открытую неравновесную систему, находящуюся в стационарном состоянии, когда приток вещества и энергии равен оттоку.
В неравновесных системах могут проходить процессы самоорганизации. Эти системы становятся чувствительны даже к очень слабым воздействиям. Они становятся чувствительными к слабым гравитационным полям, к электромагнитным полям. Короче говоря, эти системы становятся необычайно чувствительными к любым флуктуациям. И они способны подстраиваться под изменяющиеся условия. Кроме того, эти системы ещё и стремятся к уменьшению производства энтропии. Одним из мощных антиэнтропийных факторов является усложнение системы. Поэтому усложнение, о котором сказал Михаил Наумович, определяется именно состоянием системы, её неравновесностью. И эти усложнения, конечно, протекают с участием обратных связей, либо положительных, либо отрицательных.
Что можно сказать об общности законов физики и химии для живых организмов? Размеры клетки определяются законами диффузии. Известно, что масса клетки растёт пропорционально кубу, а поверхность клетки, через которую осуществляется диффузия веществ, также растёт, но пропорционально квадрату. Значит, клетка не может быть очень большой. Таким образом, закон диффузии накладывает ограничения на размеры клетки.
Ещё пример – мы все прекрасно знаем, что стволы растений, крупных деревьев, скажем, имеют в разрезе радиальную форму. Вот эта радиальная форма определяется гравитацией. Скажем, «торпедовидная» форма животных, быстро перемещающихся в плотных средах – акул, дельфинов – определяется гидродинамическими законами. Наконец, размеры или, вернее даже, масса летающих птиц определяется законами аэродинамики. Самая большая птица, которая может летать, это дрофа, и она не может иметь весь больше 23-24 килограмм.