Гиппократ. Вполне.
Сократ. Теперь рассмотрим этот вопрос с другой точки зрения. Я написал на восковой табличке число 37. Ты видишь его?
Гиппократ. Да.
Сократ. И можешь дотронуться до него рукой?
Гиппократ. Конечно.
Сократ. Значит, числа существуют?
Гиппократ. Ты смеешься надо мной, Сократ. Послушай! Я нарисовал на такой же табличке дракона с семью головами. Разве это означает, что он существует?
Я никогда не встречал никого, кто видел бы дракона. Я убежден, что драконы существуют только в сказках. Возможно, я ошибаюсь, и драконы действительно есть где-нибудь по ту сторону Геркулесовых столпов, чего не скажешь о том, которого я нарисовал.
Сократ. Ты прав, Гиппократ, я с тобой согласен. Значит, хотя мы говорим о числах и даже можем написать их, на самом деле они не существуют?
Гиппократ. Конечно.
Сократ. Не делай поспешных заключений. Давай решим еще один вопрос. Прав ли я, говоря, что мы можем сосчитать овец на лугах или корабли в гавани?
Гиппократ. Да.
Сократ. И овцы и корабли существуют?
Гиппократ. Несомненно.
Сократ. Но если овцы существуют, их число тоже должно существовать, не так ли?
Гиппократ. Ты смеешься надо мной, Сократ. Математики не считают овец, это дело овцеводов.
Сократ. Ты думаешь, что математики изучают не количество овец, кораблей или других реальных предметов, а числа сами по себе? И, таким образом, они интересуются только тем, что существует у них в сознании?
Гиппократ. Именно так я и думаю.
Сократ. Ты говорил, Театет считает, что математика изучает числа и геометрические формы. А формы? Если я спрошу тебя, существуют ли они, что ты ответишь?
Гиппократ. Существуют. Мы можем видеть, например, прекрасную форму сосуда и ощутить ее руками.
Сократ. Осталась одна неясность. Если ты смотришь на сосуд, что ты видишь — сосуд или его форму?
Гиппократ. И то и другое.
Сократ. То же самое происходит, когда ты смотришь на ягненка. Ведь ты видишь одновременно и ягненка и его шерсть?
Гиппократ. Это очень удачное сравнение.
Сократ. А я думаю, оно хромает, как Гефест. Ты можешь состричь шерсть с ягненка и увидеть ягненка без шерсти и шерсть без ягненка. Можешь ли ты отделить таким же образом форму сосуда от самого сосуда?
Гиппократ. Я полагаю, этого никто не может.
Сократ. И ты все еще уверен, что можно видеть геометрическую форму?
Гиппократ. Теперь я начинаю сомневаться.
Сократ. Кроме того, если математики изучают формы сосудов, значит ли, что их можно назвать гончарами?
Гиппократ. Конечно.
Сократ. Тогда, если Теодор — лучший математик, должен ли он быть также лучшим гончаром? Многие люди восхваляют его, но никто не говорил, что он хоть сколько-нибудь понимает в гончарном деле. Сомневаюсь, сможет ли он сделать даже самый простой горшок. Может быть, математики имеют дело с формами статуй или зданий?
Гиппократ. В таком случае они должны быть скульпторами и архитекторами.
Сократ. Вот, мой друг, мы и пришли к выводу, что математики, изучая геометрию, занимаются не формой реальных предметов, таких, как сосуды, а формами, которые существуют только в их сознании. Ты согласен?
Гиппократ. Я вынужден согласиться.
Сократ. Мы установили, что математики занимаются предметами, которые существуют не в действительности, а только в их мыслях. А теперь обсудим утверждение Театета, о котором ты упомянул раньше, что математика дает более надежные и заслуживающие доверия знания, чем любые другие науки. Скажи, приводил ли Театет какие-либо примеры?
Гиппократ. Да, он сказал, что никто не может знать точное расстояние от Афин до Спарты. Конечно, люди, которые путешествуют, знают, за сколько дней они проходят этот путь, но невозможно знать точное количество шагов на каком-то расстоянии. Однако любой может вычислить по теореме Пифагора длину диагонали квадрата. Театет сказал еще, что нельзя узнать точное число людей, живущих в Элладе. И если бы кто-либо попытался сделать это, то не достиг бы реального результата, потому что во время счета некоторые старые люди умирали бы и рождались бы дети, поэтому результат был бы только приближенным. Но спроси математика, сколько ребер у правильного додекаэдра, и он ответит, что у додекаэдра 12 граней и каждая имеет пять ребер. Получается 60 ребер, но так как каждое ребро принадлежит двум граням одновременно и потому считается дважды, получится 30 ребер, и эта цифра, несомненно, верная.