Выбрать главу

Сократ. А когда гончар делает кувшин или мореплаватель подсчитывает, сколько зерна вмещают трюмы его корабля, разве они не нуждаются в математике?

Гиппократ. Конечно, хотя, мне кажется, в делах ремесленников не требуется слишком много математики. Для большинства подобных задач достаточно знать простые правила, известные еще чиновникам египетских фараонов, и новые открытия, о которых Театет рассказывал мне с таким усердием, совсем не используются и не нужны для практических дел.

Сократ. В одном ты прав, Гиппократ, но в другом ты снова ошибаешься. Возможно, придет время, когда люди из всех математических открытий будут извлекать практическую пользу. То, что сегодня только теория, когда-нибудь сможет приобрести крайнюю необходимость для реальной жизни. Не так ли?

Гиппократ. Меня интересует настоящее.

Сократ. Ты непоследователен, Гиппократ. Если ты хочешь стать математиком, то должен осознать, что будешь работать в большей мере для будущего. А теперь вернемся к главному вопросу. Мы увидели, что познание мира идей, то есть вещей, которые не существуют, в обычном смысле этого слова, может пригодиться в повседневной жизни для ответа на вопросы о реальном мире, Не удивительно ли это?

Гиппократ. Более того, непостижимо! Это действительно чудо.

Сократ. Возможно, это не так уж таинственно, и если мы вскроем сущность этого вопроса, то сможем найти подлинную жемчужину.

Гиппократ. Прошу тебя, дорогой Сократ, не говори загадками, подобно Пифии.

Сократ. Скажи мне в таком случае, удивляет ли тебя, когда кто-то, кто побывал в дальних странах, кто многое видел и многое испытал, возвращается домой и пользуется приобретенным опытом для того, чтобы дать хороший совет своим согражданам?

Гиппократ. Вовсе нет.

Сократ. Даже если страны, которые он посетил, находятся очень далеко и населены совершенно другим народом, разговаривающим на другом языке и поклоняющимся иным богам?

Гиппократ. Нет, даже в этом случае, потому что между разными народами есть много общего.

Сократ. Теперь скажи мне: если бы оказалось, что мир математики, несмотря на его особенности, в некотором смысле подобен нашему реальному миру, ты бы все еще удивлялся, что математика может применяться для изучения реального мира?

Гиппократ. В этом случае нет, но я не вижу никакого сходства между реальным миром и воображаемым миром математики.

Сократ. Ты видишь скалу на другом берегу реки, там, где река расширяется и образует как бы озеро?

Гиппократ. Вижу.

Сократ. А ты видишь отражение скалы в воде?

Гиппократ. Конечно.

Сократ. Тогда скажи, какая разница между скалой и ее отражением?

Гиппокра т. Скала — твердый кусок тяжелого вещества. Она нагревается на солнце. И на ощупь грубая. Отражение нельзя потрогать. Если положить на него руку, то ощутишь только прохладную воду. Па самом деле отражения не существует. Это иллюзия — и ничего больше.

Сократ. Значит, нет ничего общего между скалой и ее отражением?

Гиппократ. В определенном смысле отражение есть точная копия скалы. Контуры скалы, даже самые маленькие ее складки ясно видны в отражении. Но что из того? Неужели ты хочешь сказать, что мир математики — это отражение действительного мира в зеркале нашего мышления?

Сократ. Ты сказал очень хорошо.

Гиппократ. Но как же это возможно?

Сократ. Вспомни, как развивались абстрактные математические понятия. Мы говорили, что математики имеют дело с отвлеченными числами, а не с количествами реальных предметов. Но думаешь ли ты, что тот, кто никогда не считал действительных предметов, может постичь абстрактное понятие числа? Так и в геометрии. Ребенок приходит к понятию шара благодаря общению с круглыми предметами, например с мячами. Все основные математические понятия человечество развило таким же путем. Эти понятия выкристаллизовывались из знаний о реальном мире, и совершенно естественно, что они сохраняют следы своего происхождения, подобно тому как дети сохраняют черты своих родителей. И точно так же как дети, когда они подрастают, становятся поддержкой своих родителей, так и некоторые отрасли математики, если они достаточно разработаны, становятся полезными инструментами в исследовании действительного мира.

Гиппократ. Теперь мне вполне ясно, как познание несуществующих понятий мира математики может быть полезно в повседневной жизни. Ты оказал мне большую услугу, помогая понять это.