Гиерон. Но даже если это случится, греческая культура не исчезнет бесследно: римляне переймут ее. Взгляни, как они уже сейчас пытаются подражать нам. Они копируют наши статуи, переводят нашу литературу — и, ты видишь, Марцелл заинтересовался твоей математикой.
Архимед. Римляне никогда ее не поймут. Они слишком практичны и не интересуются абстрактными идеями.
Гиерон. Они определенно заинтересовались ее практическим использованием.
Архимед. Но эти вещи неразделимы. Нужно быть мечтателем из мечтателей, чтобы успешно применять математику на практике.
Гиерон. Это звучит достаточно парадоксально. Я думал, прежде всего надо иметь практический склад ума, для того чтобы применять математику. Вот я и подошел к первому вопросу. Что в действительности является секретом новой науки, которую ты изобрел, — назовем ее прикладной математикой? И в чем главное различие между твоей прикладной математикой и тем видом математики— назовем ее чистой математикой, — которой обучают в школе?
Архимед. Прости, но я разочарую тебя. Не существует иной математики, кроме той, которой наши учителя обучали нас, и не без успеха, как я вспоминаю. Прикладной математики, отличной от математики как таковой, не существует. Мой секрет так хорошо скрыт, потому что он вовсе не является секретом; его очевидность — лучшая маскировка. Он спрятан подобно золотой монете, брошенной в пыль на улице.
Гиерон. Ты хочешь сказать, что твои изумительные машины основаны на математике, которую знает каждый образованный человек?
Архимед. Ты недалек от истины.
Гиерон. Можешь ли ты привести пример?
Архимед. Хорошо. Возьмем в качестве примера зеркало, которое сегодня сослужило такую превосходную службу. Я просто использовал хорошо известное свойство параболы: если какую-нибудь точку Р параболы соединить с фокусом параболы, а затем провести через Р прямую, параллельную оси, то эти две линии образуют равные углы с касательной к параболе в точке Р. Эту теорему можно найти в трудах моих знаменитых коллег из Александрии.
Гиерон. Трудно поверить, что ты уничтожил половину флота Марцелл а с помощью простой теоремы, одной из сотен подобных ей. Я смутно помню ее, хотя и забыл доказательство.
Архимед. Вероятно, когда ты услышал одно из ее остроумных доказательств, ты понял его и, возможно, даже восхищался его красотой и изяществом, но и только. Некоторые математики пошли дальше — они исследовали простые следствия или нашли новые доказательства, но на этом остановились. Я просто продвинулся еще на один шаг: я увидел также ее нематематические следствия.
Гиерон. Я думал, ты открыл новые законы оптики.
Архимед. Оптика — всего лишь ветвь геометрии. Я применил закон отражения лучей, уже давно известный.
Гиерон. Ты имеешь в виду, что, применяя математику, не обязательно получать новые математические результаты, надо только практические ситуации и их математические образы связывать с некоторыми хорошо известными математическими теоремами?
Архимед. Это совсем не так просто. Часто случается, что теоремы, в которой кто-то нуждается, не существует, и тогда приходится самому находить и доказывать ее. Но даже если для практической ситуации не обязательно находить математический образ, как ты говоришь (я предпочитаю называть его математической моделью), это не то же самое, что подобрать пару перчаток. Прежде всего для одной и той же практической ситуации можно сконструировать много математических моделей и выбрать наиболее подходящую из них, которая соответствует ситуации настолько близко, насколько того требует практическая цель (она может даже не соответствовать ей полностью). В то же время модель должна быть не слишком сложной и математически осуществимой. Все эти требования, конечно, противоречивы, и необходимо искусное балансирование ими. Нужно найти хорошее приближение к реальной ситуации по всем важным для наших целей пунктам и пренебречь теми, которые не важны для нас- Модель не обязана быть подобной моделируемому явлению во всех деталях, а только в тех из них, которые действительно важны. С другой стороны, одна и та же математическая модель годится для совершенно различных практических ситуаций. Например, я использовал свойства параболы при конструировании катапульты, так как путь камня, брошенного катапультой, до некоторой степени может быть аппроксимирован параболой. Я использовал параболу еще при подсчете глубины погружения корабля под действием собственного веса. Конечно, поперечное сечение корабля не имеет точной формы параболы, но более реалистическая модель не была бы математически осуществима. Тем не менее результаты достаточно хорошо согласуются с фактами. В частности, я смог найти условия, при которых корабль, находясь под действием волн и ветра, сохранит вертикальное положение, потому что его центр тяжести будет стремиться занять самое низкое возможное положение. Пытаясь описать сложную ситуацию, можно применять очень грубую модель, так как даже она дает, по крайней мере качественно, правильные результаты. А это может иметь большее практическое значение, чем количественные результаты. Мой опыт доказывает, что самая грубая математическая модель помогает лучше понять практическую ситуацию, так как при создании математической модели мы стремимся учесть все логические возможности, однозначно определить все понятия и различить важные и второстепенные факторы.