Я убежден, что сейчас больше, чем когда бы то ни было, мы должны обратить внимание на воспитание молодых математиков, которые в математическом аппарате, в математических методах и в результатах приучились бы видеть не просто логически стройную систему знаний, но и возможности их использования для проникновения в тайны природы, управления техническими системами, лучшего использования материальных ресурсов. Очень важно — и это должно быть главной идеей математического образования, — чтобы возможно больше молодых математиков были способны сделать этот «следующий шаг», о котором говорит Архимед в книге Реньи.
По-видимому, впервые четко и ярко о математике как языке науки сказал почти четыреста лет назад великий Галилео Галилей: «Философия написана в грандиозной книге, которая открыта всегда для всех и каждого, — я говорю о природе. Но понять ее может лишь тот, кто научился понимать ее язык и знаки, которыми она написана. Написана же она на математическом языке, а знаки ее — математические формулы». Несомненно, что с тех пор наука добилась огромных успехов и математика была ее верной помощницей. Без математики многие успехи науки и техники были бы просто невозможны. Недаром один из крупнейших физиков современности В. Гейзенберг так охарактеризовал место математики в современной теоретической физике: «Первичным языком, который вырабатывают в процессе научного усвоения фактов, является в теоретической физике обычно язык математики, а именно математическая схема, позволяющая физикам предсказывать результаты будущих экспериментов»[1].
Для общения и для выражения своих мыслей люди создали величайшее средство — живой разговорный язык и письменную его запись. Язык не остается неизменным — он приспосабливается к условиям жизни, обогащается словарным запасом, вырабатывает новые средства для выражения тончайших оттенков мысли. И тем не менее в ряде случаев он оказывается непригодным. В различных областях человеческой деятельности вырабатываются как бы собственные языки, специально приспособленные для точного и краткого выражения мыслей, свойственных определенному виду деятельности. При выдаче рабочего задания на изготовление нового изделия никогда не ограничиваются только словесным описанием: для уточнения размеров, формы и иных особенностей изделия необходим еще чертеж. В какой-то мере чертеж является своеобразным языком, приспособленным для передачи той информации, которую должен сообщить исполнителю конструктор. Он не допускает разночтений и позволяет в наглядной форме передать большое количество сведений, необходимых для успешного выполнения работы. Эта форма общения несравненно удобнее обычной словесной, поскольку словесное описание мало-мальски сложного конструктивного задания было бы настолько громоздким, что в нем мог бы запутаться сам автор. Графическое задание прочтет любой специалист, даже не владеющий русским языком.
В науке особенно важна ясность и точность выражения мыслей. Язык науки не должен создавать дополнительных трудностей при восприятии сообщаемой информации. Без этого требования не может быть науки как системы знаний, не может быть уверенности в том, что определенное утверждение или предположение не было искажено в процессе рассуждений. Необходимо также предусмотреть все мыслимые исходы и не пропустить каких-либо, кроме рассмотренных, возможностей. Научное изложение должно быть кратким и вполне определенным. Именно поэтому наука обязана разрабатывать собственный язык, способный максимально точно передавать свойственные ей особенности. Прекрасно сказал известный французский физик Луи де Бройль: «…где можно применить математический подход к проблемам, наука вынуждена пользоваться особым языком, символическим языком, своего рода стенографией абстрактной мысли, формулы которой, когда они правильно записаны, по-видимому, не оставляют места ни для какой неопределенности, ни для какого неточного истолкования»[2]. Но к этому нужно добавить, что математическая символика не только не оставляет места для неточности выражения и расплывчатого истолкования — математическая символика позволяет вдобавок автоматизировать проведение тех действий, которые необходимы для получения выводов. В качестве иллюстрации рассмотрим следующий простой пример.