Выбрать главу

ГИЛАС. А что по сути уже известно о зрительной аналогии, то есть о том, как это происходит, что мы распознаем формы, предметы, буквы как идентичные, хотя они могут быть самой разнообразной величины, вида, могут искажаться под влиянием оптической перспективы, освещения и т.п.?

ФИЛОНУС. Я могу только предложить тебе гипотезу, которая лучше прочих объясняет известные факты. Число волокон в зрительном нерве меньше количества элементов, с которыми этот нерв соединен, то есть световых рецепторов сетчатки и клеток зрительной области (area striata[17]). Таким образом, проекционных (чувствительных) волокон до отдельных анализаторов коры доходит меньше, чем в этих анализаторах находится клеток (воспринимающих нейронов). Из этого следует, что через относительно малое число передаточных каналов должно быть передано относительно большое количество информации. Как такое возможно? Можно провести аналогию с телевизионным аппаратом. В этом аппарате есть только один электронный луч, настолько узкий, что, отвесно падая на экран, обозначает на нем точку. Этот лучик с огромной скоростью движется по экрану, интегрируя его поверхность в доли секунды, последовательно пробегая (горизонтальными линиями) через все точки поверхности экрана. Благодаря тому, что наш глаз не фиксирует изменений, происходящих в долю секунды (меньше 1/16), телевизионный образ, в действительности складывающийся из мелких световых точек, размещающихся одна рядом с другой, мы видим «весь одновременно». Аналогично пространственный рецептор мозга «интегрирует» подвижным лучом зоны восприятия. Таким образом можно через относительно небольшое число каналов передать много информации (для одновременной передачи двух импульсов необходимо два канала, для передачи двух импульсов одного за другим достаточно одного). Амплитуда циркулирующего луча максимальна в тот момент, когда сигналов нет вообще. Это явление соответствует так называемому ритму «альфа» в электроэнцефалограмме, то есть равномерным синусоидальным подъемам и спадам электрического потенциала коры. Интегрирующий луч «бежит» так же равномерно, как и электронный луч, рисующий абсолютно белый, то есть пустой экран включенного телевизора. Когда в поле зрения появится какой-нибудь контур, то его пространственные элементы, постоянные в тот отрезок времени, когда интегрирующий луч совершает один круг (то есть длительности одной волны «альфа»), превращаются во временную серию (а затем пространственная серия точек – элементов контура пересылается в качестве временной серии следующих друг за другом импульсов). Благодаря этому даже канал, имеющий одно измерение (телевизионный, например), может передать пульсирующими сигналами объект, достаточно сложно представленный в пространстве.

Такая передача имеет и отрицательные стороны. Во-первых, скорость восприятия ограничена временем одного пробега интегрирующего луча. Сигналы, длящиеся меньше, чем рисуется один круг, создают впечатление движения (это объясняет тот факт, что они приходятся на разные подъемы синусоиды ритма «альфа»). Действительно, короткие вспышки производят впечатление движения, особенно если частота их появления близка к частоте циркулирующего луча (то есть ритму «альфа»). Во-вторых, процесс интегрирования требует непрекращающейся спонтанной деятельности коры, то есть существования в ней постоянно движущейся волны процессов. Такая спонтанная деятельность реально происходит, ее проявлением является в принципе не останавливающийся ритм «альфа» мозговых биотоков. Сигнал должен действовать по крайней мере 1/10 доли секунды, чтобы его можно было уловить. Более короткий сигнал попадает на фазу «нечувствительности» (здесь прослеживается определенная аналогия с «фазой реакции нерва» – краткого состояния отсутствия возбудимости зрительного волокна непосредственно после прохождения через него импульса). Когда происходит процесс восприятия, возникает наложение друг на друга токов разной частоты, ритм «альфа» пропадает и появляются быстросменяемые ритмы («бета»). Прекрасно подтверждает вышеприведенную гипотезу тот факт, что время, которое проходит от момента возникновения импульса до реакции зрительной коры, не всегда одно и то же. Происходит так потому, что импульс попадает по-разному: либо в момент, когда интегрирующий луч как раз достигает поля рецепции коры – тогда время между действием импульса и реакцией коры достаточно короткое, или в момент, когда интегрирующий луч как раз выходит из поля рецепции коры – и тогда он должен «ждать», когда луч совершит полный круг и вернется.

ГИЛАС. Хорошо, но чем же, собственно, является этот луч? Ведь в телевизоре он существует абсолютно реально – это направленный пучок электронов в вакуумной трубке.

ФИЛОНУС. В таком смысле, разумеется, луча в мозгу нет. Ведь прежде всего речь идет о том, что число нейронов обычно бывает большим, чем количество проводящих волокон, то есть каналов, по которым поступает информация. То, что циркулирует, – это попросту само очередное «подключение» проводящих волокон к анализатору и связанные с этим изменения порога возбудимости. Ты можешь представить себе это так: в круглой комнате находится человек, который должен проверять показания приборов, расположенных по стенам. Он не может снимать показания со всех одновременно, вот он и ходит по кругу, от одного прибора к другому. Естественно, он может зарегистрировать только такие изменения, которые произойдут в показаниях прибора за период не меньший времени одного прохода по комнате.

ГИЛАС. В твоей комнате изменения фиксирует человек, а в мозгу кто является этим наблюдателем?

ФИЛОНУС. Процессы более высокого порядка, протекающие внутри самой сети. Они проявляются в большей частоте потенциалов коры, возникающей при восприятии, мышлении и пр. Однако выделить эти процессы более высокого порядка гораздо труднее, чем элементарные процессы, о которых мы говорили, поскольку каждый такой процесс охватывает большие области коры головного мозга, так что его везде «понемногу», в то время как более элементарные процессы имеют тенденцию концентрироваться в пределах чувственных анализаторов. Пока мы обсудили, как происходит передача импульсов коре. Для смены серии импульсов в восприятие необходим ряд дальнейших процессов, поэтому, направив свет в глаз исследуемого, мы сначала наблюдаем скачок потенциала и нарушение ритма «альфа» в самой зрительной области (area striata), которые сразу распространяются на окружающие эту область сенсорные поля коры второго ряда. Именно там помещаются элементы сети, дающие возможность «распознавания» по принципу «визуальной аналогии». Это исключительно сложный процесс. Давай посмотрим, как происходит распознавание куба. Его можно наблюдать под различными углами зрения и на разном расстоянии. Имея в распоряжении одну перспективную проекцию (развертку), можно без труда вывести систему уравнений, определяющих, как бы выглядел куб с произвольно выбранной точки зрения (под произвольно выбранным углом зрения). Серию этих уравнений можно ввести в соответствующую сеть (в ее память). Тогда поступающие символы будут по очереди сравниваться с данными памяти, то есть с сериями уравнений, и в тот момент, когда поступающие импульсы структурно наложатся на определенные импульсы из памяти, возникает «резонанс», и сеть «видит куб».

ГИЛАС. То ты говоришь о том, как выглядит куб, то об уравнениях. Что же конкретно хранится в памяти?

ФИЛОНУС. Ничего, кроме способности высылать определенную серию импульсов. Ей соответствует группа соединений нейронной сети, воздействие на которые воссоздает эту серию. Математическим выражением этих соединений является уравнение, его можно записать. Одно равнозначно другому в смысле логики. Мы об этом говорили, когда обсуждали вопрос «визуальной аналогии», помнишь?

ГИЛАС. Действительно ли происходит такое поочередное сопоставление поступающих импульсов с данными памяти? В таком случае распознавание должно было бы продолжаться очень долго.

ФИЛОНУС. Представленная схема – это колоссальное упрощение. Дело в том, что достаточно небольшой частичной совместимости импульсов, чтобы запустить процесс организации поля зрения по директивам памяти. В этом смысле зрительная память активна, то есть склонна «навязывать» процессам в пределах area striata свою «концепцию». В переносном смысле можно сказать, что зрительная память «отгадывает», что она видит. Особенно наглядно это проявляется в оптических галлюцинациях, тогда, когда поступающая информация скупа, например, при плохом освещении. Тогда зрительная память в процессе организации поля видения «подсказывает» полю area striata поочередно самые разнообразные «возможные варианты», и поэтому, идя ночью по проселочной дороге, видишь сначала человеческую фигуру, которая через минуту оказывается кустом, и т.п. В реальной нейронной сети происходит не простое сопоставление импульсов, а постоянное наложение друг на друга многозначных процессов, обладающих тенденцией формироваться в определенные динамические структуры. Все эти явления протекают ритмично, то есть в виде нейронных выбросов, а электроэнцефалограмма фиксирует лишь общий результат, равнодействующую наложенных друг на друга биопотенциалов. Отдельным процессам по самой их природе соответствуют определенные ритмы. Ряд ритмов и ряд частот в нейронной сети мозга занимают как бы привилегированное положение («альфа-ритм»), и поэтому, используя импульс, например, световой, с соответственно подобранной частотой, можно «раскачать» ритмы коры, увеличить их амплитуду, используя принцип резонанса, до такой степени, что у исследуемого может начаться приступ эпилепсии. К счастью, физиологические импульсы не обладают настолько ритмичным характером, как те, что используются в экспериментах. Прежде чем начнутся конвульсии, исследуемый переживает различные эмоции, чаще всего неприятные. Это свидетельствует о непосредственной связи между частотой колебаний потенциала нейронной сети и чувствами. Особой способностью влиять на ритмику процессов в сети обладают слуховые импульсы, и это во многом объясняет то значение, которое имеет для человека музыка. Обычно главным процессам, происходящим в цепи, сопутствуют – во время сосредоточенного восприятии (перцепции) или во время спонтанного, ненаправленного мышления – частоты гармоник более выского порядка. Возникновению гармоник зависит от «субъективно переживаемой ситуации» (эмоционального психического состояния). Когда, например, мы возбуждаем нейронную сеть импульсом частоты 12 Герц, то в лобных долях могут появиться гармоники порядка 24 Герц, а в височных – 6 Герц. Если изменится настроение исследуемого, изменятся и соотношения гармоник. Когда в сети преобладает частота 6 Герц, испытуемый переживает гнетущее чувство (он с трудом его переносит) – если же доминирующую частоту повысить до 24 Герц, то он становится способным к спокойному интеллектуальному анализу световых иллюзий, вызванных импульсом. Если попросить испытуемого не противодействовать этим световым впечатлениям, позволить им «нестись» свободно, то начинают нарастать низкие гармоники порядка 6 Герц, и очень скоро испытуемый оказывается не в состоянии дольше выдержать эксперимент. Если же поддержать аналитическую, интеллектуальную атмосферу во время исследования (по-прежнему воздействуя ритмическим световым импульсом), то обычно увеличиваются высокие гармоники (24 Герца). Медленный ритм, 6 в секунду, ощущается как норма только в угрожающей, опасной ситуации и связан с появлением соответствующих эмоций. Очень существенно то, что одни и те же ритмы импульса вызывают у разных людей различные ассоциации, но у одного человека – всегда те же самые. Это свидетельствует о сугубой индивидуальности процессов, происходящих в цепи, которая легко объясняется историческим формированием ее «личности», то есть систем предпочтений, данных памяти, навыков и т.п. Из многих гипотез, которые высказывались по вопросу значения ритмов, я приведу тебе только одну. Она основана на признанных фактах, из которых следует, что когда отсутствуют приятные впечатления, то доминирует ритм «тета» (6 Герц). Эта гипотеза состоит в том, что как «альфа» ищет зрительных впечатлений, так «тета» ищет впечатлений «приятных».

вернуться

17

полосатое тело (лат.).