Так вот, кроме Сатурна, повторяю, у всех планет, – у Юпитера, у Урана, у Нептуна – тоже есть свои системы колец со своими замечательными и определенными свойствами. Скажем, очень узкие есть колечки у Урана, 9 колец, чрезвычайно узкие и очень тонкие. У Нептуна – это кольца, которые не складываются в единую систему, а представляют собой отдельные дуги.
Связано это с тем, что происходит размазывание частиц, существующих на различных расстояниях, с различными скоростями – частиц, обращающихся вокруг тела. И они не имеют возможности соединиться в единое кольцо, потому что есть система резонансов от спутника, и это резонансное явление отражается в виде таких разрывных колец. Примеров таких можно очень много привести.
Так вот, повторяю, это было в начале выдающихся успехов в наземной астрономии. А сейчас эти успехи вообще грандиозны. Скажем, последние несколько лет открывается один за другим колоссальное количество спутников в окрестности опять-таки планет-гигантов. Вообще открытие спутника – это всегда было грандиозным событием. В свое время «Вояджеры», американские аппараты, последовательно пролетели мимо Юпитера, Сатурна, Урана, Нептуна. Где-то в районе, по-моему, 2015 года они должны выйти на периферию Солнечной системы, пересечь ту область, которая связана с натеканием солнечной плазмы на межзвездный газ, где образуется своего рода ударная волна. Это, кстати, тоже очень интересная вещь, которую предстоит исследовать. «Вояджеры» открыли большое количество новых спутников у всех этих планет при пролете мимо них, и открытие каждого спутника было событием.
Так вот, мы думали, скажем, что у Юпитера – 17 спутников, у Сатурна – 18. А за последние несколько лет мы узнали, что у Юпитера их – порядка 40, у Сатурна – 32. Сейчас поступила совсем новая информация: у Нептуна, самой далекой планеты Солнечной системы, тоже открыто три новых спутника, и это сделано не при помощи космических аппаратов, а при помощи так называемой ПЗС-матрицы. Она обладает очень высокой чувствительностью и устанавливается на телескопы умеренного размера. Это колоссальный прогресс, который нам позволяет сильно расширить представление о Солнечной системе.
Ну, и наконец, математическое моделирование. Оно стимулируется не только этим новым потоком знаний – всегда надо на что-то опираться, когда вы строите модель, а не только напрягать серое вещество и использовать ту квалификацию, которую вы получили в течение вашей научной жизни. Очень важно при всем при этом обладать очень хорошими инструментами. И в данном случае инструментами являются, конечно, отличные компьютеры, которые сейчас стали привычным инструментом. И теперь мы можем просчитывать те модели, которые раньше были абсолютно не в состоянии считать (скажем, я упомянул о химической кинетике, которая связана с гидродинамическими процессами). Это стало возможным именно благодаря тому, что мы можем использовать машины терафлопного уровня. Это, конечно, грандиозное достижение.
Я чувствую, что я, может быть, немножко увлекся этим общим аспектом.
Александр Гордон: Вы рассказали о том, как богат и широк сегодня инструментарий, какие замечательные открытия делают с его помощью. Но мне бы хотелось дальнейшую беседу, если вы позволите, построить таким образом: «Прежде мы думали, что… Теперь мы знаем, что…» Потому что Солнечная система, в общем, достаточно обманчивая вещь. Зная из школьной программы о достижениях Коперника, мы, так или иначе, на протяжении всей жизни, получая какую-то информацию, выстраиваем каждый себе свою Солнечную систему. Она достаточно схожа с другими, – все системы схожи друг с другом, – но оказывается, мы не знаем каких-то вещей, которые являются основными, основополагающими в этой системе.
М.М. Я себе позволю, Александр, учитывая дефицит времени, несколько схематично ответить на ваш вопрос. Скажем, мы имели абсолютно смутное представление о ближайших наших соседях, я с этого начал.
Итак, Венера – когда запускали первые космические аппараты, мы не знали, на какое давление эти аппараты рассчитывать. Я очень хорошо помню первое обсуждение с главным конструктором АКБ имени Лавочкина Георгием Николаевичем Бабакиным, очень рано ушедшим из жизни, памяти которого я посвятил одну из своих книг. Мы обсуждали, какое давление может быть на поверхности.
А.Г. Какие гипотезы были?
М.М. Гипотезы были такие: от 0.5 атмосфер до тысячи, грубо говоря. Поэтому Бабакин принял, я бы сказал, генеральское решение, он сказал: «будем строить на 15». И, как оказалось, на высоте 23 километра при давлении, правда, в 18 атмосфер (это был конструкторский запас) мы были раздавлены. То есть давление на поверхности оказалось 92 атмосферы. Мы себе этого не представляли. Хотя о температуре по радиоастрономическим данным уже были представления – неоднозначные, но, тем не менее, они существовали: что температура на поверхности порядка 500 градусов, если точнее, 470 градусов Цельсия.
Далее, углекислый газ – страшно негостеприимная среда. О том, что на поверхности, какой рельеф, никаких вообще представлений не было. Мы очень смутно себе представляли, что скрывает эту поверхность. Это не только плотная атмосфера, но и облака, которые тоже оказались экзотическими: они сложены из серной кислоты примерно 85-процентной концентрации. Это, кстати, заставило очень серьезно поработать в технологическом плане, чтобы парашюты смогли выдержать такие условия.
Явления на поверхности. Мы сейчас знаем, что Венера обладает достаточно молодой поверхностью, что там, по-видимому, совсем недавно в геологическом смысле (это десятки, сотни, может быть, миллионов лет, что несопоставимо с возрастом Солнечной системы в 4 с половиной миллиарда лет) закончилась, а может быть, даже и продолжается, вулканическая деятельность. И так далее, о Венере можно говорить исключительно много.
Итак, это абсолютно новый взгляд на эту планету, и мы (я уже говорил о математических моделях) очень много занимались тем, что обусловило такие процессы, таковы современные условия на Венере.
Что касается так называемого необратимого парникового эффекта, чем он вызывается, как планета эволюционировала? Мы думаем, что на Венере изначально был достаточно мощный океан, но в силу начальных этапов эволюции этот океан был потерян. И есть некие свидетельства, которые подкрепляют такую модель, такую гипотезу.
Марс. Сейчас запущен «Марс-Экспресс», аппарат Европейского космического агентства. Успешно работают на орбите «Марс-Сорвейер» и «Марс-Одиссей», американские аппараты, они дали очень много новой информации. Мой коллега Брюс Яновский как-то написал: «Я думал, что знаю о Марсе все, но оказалось, – это он сказал в 2001 году, – что я знаю очень и очень мало».
Так вот, мы сейчас имеем достаточно много свидетельств того, что на Марсе, видимо, есть вода, которая в основном, видимо, существует в подповерхностном слое достаточно близко к поверхности. И это не просто обнаружение реального свидетельства наличия воды при помощи нейтронных мониторов, которые летают до сих пор на «Марс-Одиссее», и мы очень гордимся тем, что один из этих приборов наш, российский. Но он определяет воду исключительно в тонком слое порядка одного метра.
Это, кстати, тоже отдельный разговор, и очень интересный. Ведь определяется наличие не воды, а водорода. И есть некие вариации, причем и сезонные, и долготно-широтные вариации. Это связано с тем, что есть определенные новые представления о минеральном составе поверхности, потому что водород связан не только в воде, он связан еще в гидротированных минералах.