Во время трансмембранного движения вещество пересекает мембрану микроворсинок щеточной каймы кишечных клеток, поступает в цитоплазму, затем через базолатеральную мембрану – в лимфатические и кровеносные сосуды кишечных ворсинок и далее в общую систему циркуляции. Цитоплазма кишечных клеток служит компартментом, образующим градиент между щеточной каймой и базолатеральной мембраной.
В микромолекулярном транспорте в свою очередь принято выделять пассивный и активный транспорт. Пассивный транспорт может происходить благодаря диффузии веществ через мембрану или водные поры по концентрационному градиенту, осмотическому или гидростатическому давлению. Он ускоряется благодаря движущимся через поры потокам воды, изменениям градиента pH, а также транспортерам в мембране (в случае облегченной диффузии их работа осуществляется без затраты энергии). Обменная диффузия обеспечивает микроциркуляцию ионов между периферией клетки и окружающей ее микросредой. Облегченная диффузия реализуется с помощью особых транспортеров – специальных белковых молекул (специфических транспортных белков), способствующих без затраты энергии проникновению субстанций через мембрану клеток за счет концентрационного градиента.
Активно транспортируемое вещество перемещается через апикальную мембрану кишечной клетки против своего электромеханического градиента с участием специальных транспортных систем, функционирующих по типу мобильных или конформационных транспортеров (переносчиков) с затратой энергии. Этим активный транспорт резко отличается от облегченной диффузии.
Транспорт большинства органических мономеров через мембрану щеточной каймы кишечных клеток зависит от ионов натрия. Это справедливо для глюкозы, галактозы, лактата, большинства аминокислот, некоторых конъюгированных желчных кислот, а также для ряда других соединений. Движущей силой такого транспорта служит градиент концентрации Na+. Однако в клетках тонкой кишки существует не только Ма+-зависимая транспортная система, но и Ма+-независимая, которая свойственна некоторым аминокислотам.
Вода всасывается из кишечника в кровь и поступает обратно по законам осмоса, но большая часть – из изотонических растворов кишечного химуса, так как в кишечнике гипер– и гипотонические растворы быстро разводятся или концентрируются.
Всасывание ионов натрия в кишечнике происходит как через базолатеральную мембрану в межклеточное пространство и далее в кровь, так и трансцеллюлярным путем. За сутки в пищеварительный тракт человека поступает с пищей 5–8 г натрия, 20–30 г этого иона секретируется с пищеварительными соками (т. е. всего 25–35 г). Часть ионов натрия всасывается вместе с ионами хлора, а также во время противоположно направленного транспорта ионов калия за счет Na+, К+-АТФазы.
Всасывание двухвалентных ионов (Са2+, Mg2+, Zn2+, Fe2+) происходит по всей длине желудочно-кишечного тракта, а Си2+ – главным образом в желудке. Двухвалентные ионы всасываются очень медленно. Всасывание Са2+ наиболее активно происходит в двенадцатиперстной и тощей кишках с участием механизмов простой и облегченной диффузии, активируется витамином D, соком поджелудочной железы, желчью и рядом других соединений.
Углеводы всасываются в тонкой кишке в виде моносахаридов (глюкозы, фруктозы, галактозы). Всасывание глюкозы происходит активно с затратой энергии. В настоящее время уже известна молекулярная структура №+-зависимого транспортера глюкозы. Это белковый олигомер с высокой молекулярной массой и экстрацеллюлярными петлями, обладающий центрами связывания глюкозы и натрия.
Белки всасываются через апикальную мембрану кишечных клеток преимущественно в виде аминокислот и в значительно меньшей мере в виде дипептидов и трипептидов. Как и в случае с моносахаридами, энергия для транспорта аминокислот обеспечивается натриевым котранспортером.
В щеточной кайме энтероцитов существует по меньшей мере шесть Na+-зависимых транспортных систем для различных аминокислот и три – независимых от натрия. Пептидный (или аминокислотный) транспортер, как и транспортер глюкозы, представляет собой олигомерный гликозилированный белок с экстрацеллюлярной петлей.