Метаболизм основных видов нутриентов в норме и при патологии определяет потребности организма в них и пути их введения. Поэтому знания о процессах ассимиляции различных питательных веществ являются основой диетической терапии.
Белки
Белки – сложные азотсодержащие биополимеры, мономерами которых служат аминокислоты (органические соединения, содержащие карбоксильную и аминогруппы). Их биологическая роль многообразна. Белки выполняют в организме пластические, каталитические, гормональные, транспортные и другие функции, а также обеспечивают специфичность. Значение белкового компонента питания заключается, прежде всего, в том, что он служит источником аминокислот.
Аминокислоты делятся на эссенциальные и неэссенциальные в зависимости от того, возможно ли их образование в организме из предшественников. К незаменимым аминокислотам относятся гистидин, лейцин, изолейцин, лизин, метионин, фенилаланин, триптофан и валин, а также цистеин и тирозин, синтезируемые соответственно из метионина и фенилаланина. 9 заменимых аминокислот (аланин, аргинин, аспаргиновая и глутаминовая кислоты, глутамин, глицин, пролин и серии) могут отсутствовать в рационе, так как способны образовываться из других веществ. В организме также существуют аминокислоты, которые продуцируются путем модификации боковых цепей вышеперечисленных (например, компонент коллагена – гидроксипролин – и сократительных белков мышц – 3-метилгистидин).
Большинство аминокислот имеют изомеры (D– и L-формы), из которых только L-формы входят в состав белков человеческого организма. D-формы могут участвовать в метаболизме, превращаясь в L-формы, однако утилизируются гораздо менее эффективно.
По химическому строению аминокислоты делятся на двухосновные, двухкислотные и нейтральные с алифатическими и ароматическими боковыми цепями, что имеет важное значение для их транспорта, поскольку каждый класс аминокислот обладает специфическими переносчиками. Аминокислоты с аналогичным строением обычно вступают в сложные, часто конкурентные взаимоотношения.
Так, ароматические аминокислоты (фенилаланин, тирозин и триптофан) близкородственны между собой. Хотя фенилаланин является незаменимой, а тирозин синтезируемой из него заменимой аминокислотой, наличие тирозина в рационе как будто бы «сберегает» фенилаланин. Если фенилаланина недостаточно, или его метаболизм нарушен (например, при дефиците витамина С) – тирозин становится незаменимой аминокислотой. Подобные взаимоотношения характерны и для серосодержащих аминокислот: незаменимой – метионина, и образующегося из него цистеина.
Приведем другой пример. Триптофан в ходе превращений, для которых необходим витамин В6 (пиридоксин), включается в структуру НАД и НАДФ, то есть дублирует роль ниацина. Приблизительно половина обычной потребности в ниацине удовлетворяется за счет триптофана: 1 мг ниацина пищи эквивалентен 60 мг триптофана. Поэтому состояние пеллагры может развиваться не только при недостатке витамина РР в рационе, но и при нехватке триптофана или нарушении его обмена, в том числе вследствие дефицита пиридоксина.
Аминокислоты также делятся на глюкогенные и кетогенные, в зависимости от того, могут ли они при определенных условиях становиться предшественниками глюкозы или кетоновых тел (табл. 3.1).
Таблица 3.1 Классификация аминокислот
Примечания: Г – глюкогенные, К – кетогенные аминокислоты; * – гистидин незаменим у детей до года; ** – «условно-незаменимые» аминокислоты (могут синтезироваться из фенилаланина и метионина).
Поступление азотсодержащих веществ с пищей происходит в основном за счет белка и, в менее значимых количествах, свободных аминокислот и других соединений. В животной пище основное количество азота содержится в виде белка. В продуктах растительного происхождения большая часть азота представлена небелковыми соединениями, а также содержится множество аминокислот, которые не встречаются в организме человека и зачастую не могут метаболизироваться им.
Человек не нуждается в поступлении с пищей нуклеиновых кислот. Пуриновые и пиримидиновые основания синтезируются в печени из аминокислот, а избыток этих оснований, поступивший с пищей, выводится в виде мочевой кислоты. В синтезе пиримидиновых колец принимает участие витамин В12, для образования пуриновых структур необходима фолиевая кислота. Именно поэтому дефицит этих нутриентов отражается, прежде всего, на органе с высоким уровнем пролиферации, где идет наиболее интенсивный синтез нуклеиновых кислот – кроветворной ткани.