некоторых областях повышенной плотности газа его давление не способно противостоять его же собственной силе притяжения, то такие уплотнения, случайно возникнув, уже не расширяются, а продолжают сжиматься. Этот процесс называют «гравитационной неустойчивостью» [1—3]. По-видимому, именно он породил звёзды и звёздные системы, власть в которых окончательно захватила гравитация.
Закон гравитации Ньютона
Великие теоремы притяжения
Итак, в мире звёзд царствует гравитация. Остальные три физических взаимодействия — электромагнитное, слабое и сильное ядерные — практически никакой роли в движении звёзд и в эволюции звёздных систем не играют. Сила гравитации описывается чрезвычайно простым, особенно с точки зрения искушённых в математике школьников, законом. Исаак Ньютон опубликовал его в 1687 году в своей замечательной книге «Начала натуральной философии». Этот закон описывает взаимодействие двух материальных точек, т. е. таких тел, размер которых мал по сравнению с разделяющим их расстоянием. Но он применим к любым телам, поскольку каждое из них можно представить в виде совокупности материальных точек. Закон Ньютона гласит, что две материальные точки, обладающие массами М, и М2, притягиваются друг к другу с одинаковой силой, равной произведению их масс, делённому на квадрат расстояния между ними и, разумеется, умноженному на некоторую константу (обычно в курсах физики её обозначают буквой G, от лат. gravitas — тяжесть), значение которой зависит от единиц измерения массы, силы и расстояния:
В системе СИ ([М] = кг, [R] = м, [F] = Н) значение
но астрономы (и физики-теоретики, когда они работают в этой области) пользуются более удобными для проведения вычислений системами единиц, в которых многие константы, в том числе и G, можно полагать равными единице и забывать про них.
Обратите внимание, как коротка запись числа G — всего четыре значащих цифры; другие физические константы содержат по 8—10, а порой и 12 цифр. Почему же именно значение G измерено с такой низкой точностью? А потому, что гравитация — слабая сила, менее других проявляющая себя в лабораторных экспериментах. Очень трудно
определить притяжение двух тел с аккуратно измеренной массой. Если два большущих слона (М1 = М2 = 4 т) стоят в лаборатории, тесно прижавшись друг к другу (R= 1 м), то их взаимное гравитационное притяжение составляет всего около 0,1 г. А вот если бы один слон состоял только из протонов, а другой — только из электронов, то они притягивались бы с силой порядка 1030 т! К счастью, все слоны, планеты и звёзды состоят практически из равного количества протонов и электронов, электрическое взаимодействие которых уравновешивается. Зато гравитационное взаимодействие всех частиц — протонов, нейтронов и электронов — суммируется, поскольку в природе нет гравитационных зарядов разного знака. Поэтому крайне слабая сила всемирного тяготения, почти незаметная между лабораторными телами, является доминирующей для крупных космических тел.
Итак, взаимодействие материальных точек описывается очень простым законом. Для математика этого было бы достаточно, но физик и астроном сразу вспоминают, что реальные тела — это ведь не точки, а протяжённые объекты. Значит, производя расчёты, придётся иметь дело с суммированием или с интегрированием, т. е. с вычислением суммы всех сил, действующих на интересующий нас объект со стороны всех прочих объектов Вселенной. Это задача крайне сложная: представьте себе, что слон притягивает мышонка, и нам предстоит просуммировать все силы, действующие на мышонка со стороны каждой точки хобота, ушей, ног, хвоста и прочих органов слона — со стороны миллионов частей, каждую из которых можно уподобить материальной точке... Сегодня мы можем сказать: что в этом особенного? Мысленно разобьём слона на миллион частей и просуммируем силы от единицы до миллиона. Настольный компьютер сделает это за минуту, поскольку суммировать придётся простенькие члены. Но во времена Ньютона не было компьютеров, и любое суммирование или то, что мы теперь называем интегрированием по объёму, было чрезвычайно сложной операцией, ведь её приходилось выполнять пером на бумаге. И Ньютон не продвинулся бы далеко в исследовании Вселенной, если бы не две замечательные теоремы, которые ему удалось доказать.
I Теорема 1. Сферическое тело (тонкая сферическая оболочка) постоянной плотности притягивает любую точку, находящуюся вне его, так, как будто вся масса тела сосредоточена в его центре.