Рис. 3. Траектории частицы при п немного меньшем (а) или большем (б), чем 2, показывают направление поворота орбиты, близкой к эллиптической.
Рис. 2. Смоделированные на компьютере траектории движения частицы, обращающейся вокруг центра притяжения под действием силы F ~1/Rn. Значения п = 1, 2 и 3 соответствуют ньютоновскому притяжению в физическом пространстве двух, трёх и четырёх измерений.
Значит, если бы мы жили в евклидовом пространстве N измерений (время — особая координата, здесь мы её не рассматриваем), то закон Ньютона имел бы форму
например, если бы мы жили в 4-мерном пространстве, то сила была бы обратно пропорциональна кубу расстояния.
Интересно, к чему бы это привело? Давайте менять показатель степени при R и смотреть, как будет двигаться пробное тело в этом случае. На рис. 2 показаны варианты такого движения для целого n = N — 1, а на рис. 3 — для нецелого n в законе
Среди наших примеров только для ньютоновского притяжения (n = 2) получилась простая замкнутая траектория. Быть может, вы угадаете ещё одно значение n, дающее эллиптическую траекторию? В чём отличие этого эллипса от кеплеровской орбиты?
При n < 3 область движения частицы ограничена: хотя траектория не замкнута, частица не покидает области в виде кольца; такое движение можно считать устойчивым. При n > 3 устойчивость исчезает: частица либо бесконечно удаляется от центра, либо падает в центр. При небольшом отличии n от 2 траектория имеет вид «розетки»; такую орбиту могло бы иметь тело, движущееся по эллипсу, ось которого непрерывно поворачивается. В случае n > 2 поворот эллипса происходит в направлении движения частицы; в случае n < 2 эллипс поворачивается в противоположном направлении. Далее мы увидим, что эти математические этюды имеют важный физический смысл.
Реальное движение планет
Зачем мы «издевались» над простым и изящным законом Ньютона 1/R2? Дело в том, что, обращаясь к реальным небесным объектам, мы замечаем их отличие от идеальных сфер. Форма Земли или Солнца лишь в первом приближении похожа на сферу. Мы знаем, что Земля по причине вращения сплюснута вдоль полярной оси: расстояние между её северным и южным полюсами на 43 км меньше, чем между противолежащими точками экватора. Из-за этого, к сожалению, теорема Ньютона в точности не выполняется, и Земля притягивает к себе не как помещённая в её центре массивная точка, а по более сложному закону. Приблизительно этот закон можно записать в форме, подобной форме ньютоновского закона:
Где IნI << 1 — маленькая добавочка, которая может быть положительной или отрицательной в зависимости от формы тела. Нарушается простота ньютоновского закона, а значит, нарушается и простота взаимного движения тел. Как мы видели, орбиты тел получаются незамкнутыми и гораздо более сложными, чем эллиптические.
Действительно, наблюдая движение планет и их спутников, астрономы обнаружили, что все небесные тела движутся не в точности по эллипсам, а скорее по «розеткам». Разумеется, это никого не удивило, поскольку, начиная с Ньютона, учёные ясно понимали, что простой эллипс, как и сама задача двух тел — лишь первое приближение к реальности. Приняв во внимание взаимное притяжение планет, обращающихся вокруг Солнца, удалось почти полностью объяснить форму их орбит. Орбиты спутников, близких к своим
планетам, в основном искажаются из-за несферичности планет, а на движение далёких спутников (в их числе — наша Луна) решающее влияние оказывает Солнце.
Используя законы Ньютона, астрономы XVIII—XIX веков достигли высочайшего искусства в предвычислении траекторий планет. Если наблюдаемое движение планеты отклонялось от расчётного, то виновника возмущений искали не в основах теории, а на небе — среди неоткрытых космических тел. Триумфом в этой работе стало теоретическое открытие планеты Нептун, которую «на кончике пера» обнаружили в 1846 году французский астроном У. Леверье и англичанин Дж. Адамс в поисках виновника возмущений в движении Урана.