Выбрать главу

Макс Борн.

Математическое основание квантовой механики

В кильватере первопроходческой работы Гейзенберга 1925 года Борн и Йордан (потом совместно с Гейзенбергом) разработали общую формулировку квантовой механики благодаря использованию матричного исчисления. В 1926 году Борн ввел вероятностную интерпретацию волновой функции, придав ей физическое значение. Этот вывод, вызвавший бесконечные споры об основах квантовой механики, лежит в основе «копенгагенской интерпретации». В 1933 году Борн переехал в Великобританию, где в 1936 году стал профессором университета Эдинбурга. В 1954 году он получил Нобелевскую премию по физике. Йордан со своей стороны работал над созданием солидной математической основы квантовой теории и вместе с Дираком сформулировал новаторские идеи в области квантовой теории поля. В 1933 году он вступил в партию нацистов, в результате чего Нобелевскую премию ему не присудили. В последние годы научная деятельность Йордана была связана главным образом с исследованиями в области геологии и биологии.

АЛГЕБРА КВАНТОВЫХ ЧИСЕЛ

Дирак разработал формализм квантовой механики независимо от своих коллег в университете Геттингена и ввел понятие «q-чисел» для квантовых переменных. Он также четко разграничил q-числа, в которых буква «q» отсылает к quantum (квантовый) или к queer (странный, причудливый), и с-числа, в которых буква «с» означает classics (классический) или commuting (коммутативный). Так он четко отделил квантовый мир от классического. Хотя Дирак был убежден в превосходстве своей версии квантовой теории над матричной механикой Гейзенберга, Борна и Йордана, он быстро осознал, что на самом деле оба подхода равносильны:

«Мне понадобилось время, чтобы убедиться: мои q-числа на самом деле не являются более общими, чем матрицы, и обладают теми же недостатками, что и математически доказанные недостатки матриц».

Летом 1926 года Дирак разработал новую версию своей квантовой теории, известной под названием «алгебры q-чисел». Представленная в виде чисто математической теории, без каких-либо отсылок к проблемам именно физики, данная работа не произвела особого впечатления на сообщество ученых-физиков. Только некоторые из них, интересовавшиеся исключительно математическими аспектами квантовой механики, такие как Йордан, проявили любопытство. Последний оценил теорию Дирака следующим образом: «Я нахожу публикацию Дирака крайне интересной. По моему мнению, математика столь же интересна, как и физика». Дирак ввел общее определение различения квантовых переменных (q-чисел) и из этой дифференциации вывел коммутативное соотношение между операторами положения (q), момента (р) и орбитального момента (L) — эти отношения уже были найдены в матричной механике Борна, Йордана и Гейзенберга. Данные результаты сегодня являются отправной точкой любой работы в области квантовой механики.

Таким образом, алгебра q-чисел появилась как альтернатива матричной механике. С момента публикации первой статьи Гейзенберга Дирак почти все свое время посвящал разработке собственной системы, стремясь показать, что его подход способен объяснить основные результаты, полученные в субатомном мире. Однако он занимался столь упорно, что не успевал обращать внимание на новые формулировки квантовой механики. Работы Дирака этого периода были приняты научным сообществом физиков с большим уважением, но произвели меньшее впечатление, нежели работы Гейзенберга, Борна и Йордана. Вникнуть в суть работы Дирака было нелегко, многим коллегам его стиль казался непонятным. Например, физик Джон Слейтер не скрывал своей неудовлетворенности:

«Существует два типа теоретических физиков. Первый объединяет таких людей, как я, — прозаичных и прагматичных, всегда пытающихся говорить и писать как можно яснее. Второй состоит из «волшебников», жестикулирующих так, словно сейчас достанут из шляпы кролика (как Дирак), и находящих удовлетворение только тогда, когда их тексты и объяснения выглядят глубоко таинственными ».