Выбрать главу

1) перемещать предмет только в тот квадрат, который окажется свободным;

2) не передвигать предметов по диагонали квадрата;

3) не переносить один предмет поверх другого;

4) не помещать в квадрат более одного предмета, даже временно.

Задача эта имеет много решений, но интересно найти самое короткое, – т. е. обменять местами чайник и молочник в наименьшее число ходов.

В поисках этого кратчайшего решения я не заметил, как прошел вечер; пришлось покинуть станцию, не найдя в тот вечер кратчайшего решения.

Может быть, читатели найдут его? На всякий случай предупреждаю, что искомое «наименьшее» число ходов все же больше дюжины, хотя и меньше полутора дюжин.

ЗАДАЧА № 3 Автомобильный гараж

На нашем чертеже изображен план автомобильного га ража с помещениями для двенадцати автомобилей. Но по мещение так неудобно, так мало, что заведующий гаражем постоянно наталкивается на затруднения. Вот одно из них.

Предположите, что восемь автомобилей стоят в указанных здесь положениях. Как могут автомобили 1, 2, 3 и 4 перемениться местами с автомобилями 5, 6, 7 и 8? И при каком способе обмена они сделают наименьшее число переездов?

Рис. 3.

Надо заметить, что два автомобиля одновременно двигаться не могут и что в квадрате не могут одновременно находиться два автомобили. ЗАДАЧА № 4 Три дороги

Три брата – Петр, Павел и Яков – получили для обработки три участка земли, расположенные рядом, невдалеке от их домов. На чертеже вы видите расположение домов Петра, Павла и Якова и соответствующих земельных участков.

Рис. 4.

Вы замечаете, что участки расположены не совсем удобно для работающих на них, – но братья не могли сговориться об обмене.

Каждый устроил огород на своем участке, и так как кратчайшие пути к огородам пересекались, то между братьями вскоре начались пререкания, перешедшие в ссоры. Желая избегать всяких столкновений, братья решили отыскать такой путь к своим участкам, чтобы не пересекать друг другу дороги. После долгих поисков они нашли такие три пути и теперь ежедневно ходят на свои огороды, не встречаясь друг с другом.

Можете ли вы указать эти пути?

ЗАДАЧА № 5 Мухи на занавеске

На оконной занавеске, разрисованной квадратиками, уселось 9 мух. Случайно они расположились так, что никакие две мухи не оказывались в одном и том же прямом или косом ряду (см. рис. 5).

Рис. 5.

Спустя несколько минут три мухи переменили свое место и переползли в соседние, незанятые клетки; остальные 6 остались на местах. И курьезно: хотя три мухи перешли на другие места, все 9 снова оказались размещенными так, что никакая пара не находилась в одном прямом или косом ряду.

Можете ли вы сказать, какие три мухи пересели и какие квадратики они избрали?

ЗАДАЧА № 6 Дачники и коровы

Вокруг озера выстроены четыре дачи, а поближе к берегу – четыре коровника. Владельцы дач желают соорудить сплошной забор так, чтобы озеро было закрыто от коров, но чтобы в то же время оно было доступно для дачников, желающих купаться.

Рис. 6.

Исполнимо ли это желание? Если исполнимо, то как надо построить забор, чтобы он имел наименьшую длину и, следовательно, обошелся возможно дешевле? ЗАДАЧА № 7 Десять домов

Некто желал построить 10 домов, соединенных между собою крепкими стенами; стены должны тянуться пятью прямыми линиями, с 4-мя домами на каждой линии.

Приглашенный зодчий представил план, который вы видите здесь на рисунке 7-м.

Рис. 7.

Но заказчик остался недоволен этим планом: ведь при таком расположении можно подойти извне к любому дому, а ему хотелось, чтобы если не все, то хоть один или два дома были защищены стенами от нападения извне. Зодчий возразил, что нельзя удовлетворить этому условию, раз 10 домов должны быть расположены по 4 на каждом из 5-ти заборов. Но заказчик настаивал на своем.

Долго ломал зодчий голову над этой задачей и наконец разрешил ее. Может быть, и вам посчастливится найти такое расположение 10 домов и 5 соединяющих их прямых заборов, чтобы требуемое условие было удовлетворено.

ЗАДАЧА № 8 Деревья в саду

В саду росло 49 деревьев, и вы можете видеть на чертеже 8-м, как они были расположены. Садовник нашел, что деревьев слишком много; он желал расчистить сад от лишних деревьев, чтобы удобнее разбить цветники. Позвав работника, он дал ему такое распоряжение:

– Оставь только 5 рядов деревьев, по 4 дерева в каждом ряду. Остальные сруби и возьми их себе на дрова за работу.

Рис. 8.

Когда рубка кончилась, садовник вышел посмотреть работу. К огорчению, сад был почти опустошен: вместо 20 деревьев работник оставил только 10, срубив 39 деревьев!