На обыкновенных весах лежат: на одной чашке – булыжник, весящий ровно 2 килограмма, на другой – железная гиря в 2 килограмма. Я осторожно опустил эти весы под воду. Остались ли чашки в равновесии?
ЗАДАЧА № 29 Как это сделаноВы видите здесь деревянный куб, сделанный из двух кусков дерева: верхняя половина куба имеет выступы, входящие в выемки нижней части. Но обратите внимание на форму и расположение выступов и объясните: как ухитрился столяр соединить оба куска?
ЗАДАЧА № 30 Cкорость поезда
Вы сидите в вагоне железной дороги и желаете узнать, с какою скоростью он мчится. Можете ли вы это определить по стуку колес?
РЕШЕНИЯ ЗАДАЧ №№ 21-30
Решение задачи № 21Различно расположенных прямоугольников в этой фигуре можно насчитать 225.
Решение задачи № 22Если бы речь шла о градусах температуры, то, конечно, градус Реомюра всегда больше градуса Цельсия, именно на 1/5 долю; поэтому, если в вашей комнате 16 градусов Реомюра, то по Цельсию – 20.
Но это вовсе не значит, что на той дощечке термометра, на которой нанесены деления (на «шкале»), длина градусов всегда должна быть больше у термометра Реомюра, нежели у Цельсия. Длина деления зависит от того, сколько ртути в шарике термометра, и от толщины трубки. Чем больше ртути в шарике и чем тоньше канал трубки, тем выше поднимается ртуть в трубке при нагревании и тем больше промежуток между двумя делениями шкалы. В этом смысле «градус» может иметь самую различную длину, и вполне понятно, что такой градус Реомюра бывает нередко меньше градуса Цельсия.
Решение задачи № 23Легко узнать, каков был средний заработок семерых рабочих; для этого нужно избыточные 3 рубля разделить поровну между 6 плотниками. К 20 рублям каждого надо, следовательно, прибавить 50 коп., – это и есть средний заработок каждого из семерых.
Отсюда узнаем, что столяр заработал 20 р. 50 к. + 3 р., т. е. 23 р. 50 к.
Решение задачи № 24Вот каким способом можете вы получить 100 из ряда девяти цифр и трех знаков + и —:
123-45-67+89 = 100.
В самом деле:
Других решений задача не имеет.
Впрочем, если у вас есть терпение, попытайтесь испробовать другие сочетания.
Решение задачи № 25Казалось бы, надо просто сложить числа страниц трех томов – и задача решена. Но не спешите с решением. Обратите внимание на то, как стоят книги на полке и как расположены в них страницы.
Вы видите, что 1-я страница I тома примыкает к 640-й странице II тома, а последняя страница III находится рядом с первой страницей II тома.
И если червь проделал ход от 1-й страницы 1 тома до последней страницы III тома, то он прогрыз всего только 640 страниц среднего тома, да еще 4 крышки переплета, – не более.
Решение задачи № 26Существует б е с ч и с л е н н о е м н о ж е с т в о пар таких чисел. Вот несколько примеров:
Конечно, меткий стрелок попадет в цель, – если только пароход движется равномерно по прямой линии. Такое движение парохода ничем не может повлиять на полет пули.
Другое дело, если бы в самый момент выстрела пароход внезапно остановился, или замедлил ход, или ускорил его, или изменил курс: тогда пуля могла бы и не попасть в цель.
Решение задачи № 28Каждое тело, если погрузить его в воду, становится легче: оно «теряет» в своем весе столько, сколько весит вытесненная им вода. Зная этот закон (открытый Архимедом), мы без труда можем ответить на вопрос задачи.
Булыжник весом в 2 килограмма занимает больший объем, чем 2-килограммовая железная гиря, потому что материал камня, гранит, легче железа. Значит, булыжник вытеснит больший объем воды, нежели гиря, и, по закону Архимеда, потеряет в воде больше веса, чем гиря: носы под водой наклонятся в сторону гири.
Решение задачи № 29Ларчик открывается очень просто, как видно из чертежа 26-го.
Все дело только в том, что выступы и углубления идут не крестом, как невольно кажется при рассматривании готовой вещи, а параллельно, в косом направлении. Такие выступы очень легко сбоку вдвинуть в соответствующие выемки. Решение задачи № 30
Вы заметили, конечно, что при езде в вагоне все время ощущаются мерные толчки; никакие рессоры не могут сделать их неощутительными. Толчки эти происходят оттого, что колеса слегка сотрясаются в местах соединения двух рельсов, и этот толчок передается всему вагону. Значит, стоит лишь вам сосчитать, сколько толчков в минуту испытывает вагон, чтобы узнать, сколько рельсов пробежал поезд. Теперь остается лишь умножить это число на длину рельса, – и вы получите расстояние, проходимое поездом в одну минуту.