Выбрать главу

В солнечной спектроскопии используются большие решетки, достигающие 10 см, на которых нанесены десятки тысяч штрихов. При совместном использовании телескопа и спектрометра можно изучать спектр различных частей солнечного диска, и исследовать изменения температуры, состава и скорости внешних слоев Солнца. Каждый слой солнечной атмосферы характеризуется определенным интервалом значений температуры и давления. Поэтому и оптические свойства каждого слоя различны. Так же как геологи последовательно снимают слои земной поверхности, соответствующие различным эпохам истории Земли, так и спектроскописты своими методами могут проникать сквозь различные слои атмосферы Солнца.

Для усиления контраста фотографы часто используют цветные фильтры. Желая запечатлеть образование облаков, они ставят перед объективом красный фильтр, отсекая голубой цвет ясного неба. Подобная методика дает ценные результаты в астрономии. Так, у спиральной галактики, сфотографированной в синем свете, хорошо видны рукава; рисунок газовой туманности, наоборот, рельефнее виден в красном свете. Однако используемые для этих целей цветные стекла или желатиновые фильтры широкополосны, так, они могут пропускать свет в полосе длин волн, равной примерно 100 нанометрам (нанометр составляет 10-9 м и часто выражается в ангстремах, 1 нанометр равен 10А). Для научной работы имеются фильтры с меньшей полосой пропускания до 0,01 нанометра, или 0,1 А. Для построения таких фильтров используется принцип интерференции света в оптической системе фильтра. Свет отражается на различных элементах фильтра таким образом, что в результате гасится все, кроме излучения в выбранном спектральном интервале, который может быть сделан очень узким (до 0,01 нм). (Как было упомянуто выше, только через такие фильтры можно смотреть прямо на Солнце.) Интерференционный фильтр может обрезать 99,95% падающего света, зато излучение в выбранном интервале длин волн проходит полностью. Достоинство этих фильтров заключается как раз в том, что можно рассматривать солнечный диск в очень узком участке спектра. Как мы увидим, это очень важно для изучения различных слоев атмосферы Солнца.

Солнечный свет излучается различными слоями солнечной атмосферы. Как я уже отмечал, температура и давление меняются во внешних слоях Солнца. Красное излучение приходит из более глубоких слоев, чем синее. Желтый свет Солнца, видимый нами невооруженным глазом, является смесью излучений, выходящих из различных слоев. Изучая Солнце в определенных длинах волн, мы тем самым рассматриваем различные слои солнечной «луковицы». Это очень мощное средство для выделения отдельных слоев, особенно если наблюдения ведутся в одной из фраунгоферовых спектральных линий. Например, на фотографиях (называемых спектрогелиограммами), полученных в свете линии К (λ 393,4 нм) ионизованного атома кальция, видны яркие области, особенно вблизи солнечных пятен, где атомы кальция чрезвычайно возбуждены.

Заслуга в изобретении устройства для получения фотографии Солнца в узком спектральном диапазоне (т.е. в монохроматическом свете) принадлежит двум исследователям: Джоржу Хейлу из США и Деландру из Франции. Оба изобрели спектрогелиограф одновременно и независимо друг от друга. Гений американской астрономии Хейл построил первый такой прибор в своей личной обсерватории вблизи Чикаго. В 1889 г., будучи еще студентом Массачусетского технологического института, Хейл видоизменил Гарвардский спектрограф так, что можно было получить изображение Солнца в одной спектральной линии. Хейлу тогда был всего 21 год. Основной принцип метода легко понять. Солнечный телескоп образует изображение Солнца на щели спектрографа, и в спектрограф через эту щель проникает узкая полоска поверхности Солнца. Эта «полоска Солнца» в спектрографе при помощи призм и решетки разлагается в спектр, и в каждой спектральной линии мы имеем по существу монохроматическое изображение щели спектрографа. Можно расположить фотографическую пластинку в спектрографе так, чтобы на нее падала только одна сильная линия, например Нα. Тогда на этой пластинке будет зарегистрировано монохроматическое (в Нα) изображение одной узкой полоски поверхности Солнца. Если начать одновременно и синхронно двигать изображение Солнца на входной щели спектрографа и фотографическую пластинку, то на пластинке мы можем получить непрерывное монохроматическое изображение диска Солнца (подобно тому, как сканирующий растр позволяет получить телевизионное изображение). Такова основная идея спектрогелиоскопа. В настоящее время для получения монохроматических изображений Солнца используются интерференционные фильтры, они и по цене доступны любителям астрономам. У таких фильтров нет движущихся частей, работа с ними не сложна, а скорость получения снимков высока.