Выбрать главу

Нам, конечно, зададут оригинальный вопрос – а что, мол, дают такие представления о температуре? Вот тебе раз! Да из них сразу следует оглушительный вывод: при выравнивании температур у пары тел, находящихся в тепловом контакте, никакой нескомпенсированной «передачи тепловой энергии» от горячего тела к холодному не происходит. Каждое из этих тел остаётся при своей сумме энергий, а изменяются лишь соотношения в сопряжённых парах энергий, входящих в эти суммы. Не менее оглушительный вывод следует для термоизолированных систем: такая система, без взаимодействия с окружающим миром, не может изменить свою суммарную энергию, но вполне может изменить свою температуру – если, в результате некоторых внутренних процессов, изменится соотношение в той или иной сопряжённой паре энергий. Примеры таких процессов – химических, электрических, ядерных – мы уже приводили выше. Именно с химическими процессами такого рода имеют дело термохимики, когда они измеряют теплоты химических реакций калориметрическим методом – где измеряемой величиной является вовсе не энергия, а приращение температуры.

Видите, как оно всё получается? Шутить изволят термохимики, когда говорят, что определяют тепловые эффекты химических реакций. Не тепловые эффекты они определяют, а температурные. Не понимают, что между ними – большая разница. Насчёт причин того, что называется тепловыми эффектами химических реакций, наука будет заблуждаться, сохраняя умное выраженье на лице, пока в ходу будут такие научные термины, как «выделение или поглощение тепла при химических реакциях». Эти термины мастерски вводят в заблуждение: можно подумать, что реакция, идущая «с поглощением тепла», заимствует это тепло из окружающей среды. Которая, в свою очередь, это тепло любезно предоставляет: на, мол, реакция, иди себе с Богом. Для хорошей, мол, реакции – не жалко! Можно подумать, что без этой любезной помощи – например, в условиях термоизоляции – реакция «с поглощением тепла» идти не сможет. Ха-ха! Да она там идёт с ещё большим удовольствием – мы об этом уже упоминали выше. И результатом этого большого удовольствия является что? Правильно: понижение температуры в зоне реакции – без какого-либо теплообмена с окружающей средой, ведь этот теплообмен сведён на нет с помощью теплоизолирующих стенок!

Дяденьки, вот вы занимаетесь калориметрическими измерениями уже почти триста лет. Калориметр – это ведь не шибко навороченное устройство. Это не коллайдер, не детектор гравитационных волн, и даже не интерферометр Майкельсона. Надо было иметь особые дарования, чтобы за все эти годы не заметить, что так называемые тепловые эффекты химических реакций являются, в действительности, эффектами повышения-понижения температуры в зоне реакции. А эти повышения-понижения температуры требуют совсем иных объяснений, чем «выделения-поглощения тепла».

У нас, конечно, поинтересуются – чем же нас не устраивает традиционное объяснение причин тепловых эффектов химических реакций. Например, при экзотермической реакции, тепло выделяется за счёт увеличения энергии химических связей у продуктов реакции по сравнению с реагентами – это, мол, считается твёрдо установленным. Ага! Считается! Сейчас мы покажем, как это «считается» - буквально! Энергии химических связей – они ведь характеристические, правда? Т.е., они определяются лишь свойствами атомов, сцепившихся в молекулу, и не зависят от внешних химических параметров, вроде температуры и давления. Если – и у реагентов, и у продуктов реакции – энергии химических связей характеристические, то и разность этих энергий, т.е. тепловой эффект реакции, тоже должен быть характеристическим. Так ведь нет! Величины тепловых эффектов, как правило, зависят от температуры! Чтобы не делать сокрушительный для термохимии вывод о непостоянстве энергий химических связей, теоретики вот до чего додумались: единственной, мол, причиной температурных зависимостей тепловых эффектов являются температурные зависимости теплоёмкостей у реагентов и продуктов реакции. И сформулировали закон Кирхгофа: производная по температуре от теплового эффекта реакции равна разности теплоёмкостей начальных и конечных веществ. Но чтобы привести справочные зависимости тепловых эффектов и теплоёмкостей в согласие с законом Кирхгофа, потребовалась адова работа. Как те, так и другие измеряются калориметрическим способом – не будучи при этом независимыми и образуя порочный круг (см. выше). Но это – ещё пустячки по сравнению с тем, что температурная зависимость теплоёмкости того или иного вещества, полученная по результатам исследования одних реакций, даёт неверные предсказания применительно к другим реакциям. Требуются пересчёты: согласования и пересогласования. Немалая часть справочных величин – теплоёмкостей, теплот образования, энергий диссоциации – получена не эмпирическим путём, а на основе калькуляций. Да и закон Кирхгофа подтверждается, по сути дела, лишь калькуляциями – выполненными именно так, как требует этот закон! Да, термохимикам не позавидуешь. Исследуется какая-нибудь новенькая реакция – и, по-хорошему, все справочники надо переписывать заново. А число реакций всё множится и множится… В этой адовой работе задействованы целые научно-исследовательские институты! Всё уточняют и уточняют, всё перечитывают и пересчитывают… и конца-края не видно. Вот так оно и «считается твёрдо установленным». Каким цифрам можно доверять в современных справочниках термодинамических величин – этого никто не знает.