Когда я в начале 1980-х работал научным сотрудником в Йельском университете, секвенирование, т.е. определение фактической последовательности букв генетического кода, было грандиозным предприятием даже для сравнительно короткого (в несколько сотен букв) участка ДНК. Методы отличались сложностью, для экспериментов требовалось множество подготовительных шагов, в них использовались дорогостоящие и опасные (в том числе радиоактивные) реагенты, а сверхтонкие гели приходилось переливать вручную, и чуть ли не всегда их портили пузырьки или какие-то еще дефекты. Детали не имеют значения; суть в том, что мы продвигались очень медленно, методом проб и ошибок.
Тем не менее моя первая опубликованная работа по генетике человека касалась именно секвенирования ДНК. Я исследовал выработку в организме одного особого белка — фетального (плодного) гемоглобина, который в норме присутствует в красных кровяных тельцах человеческих эмбрионов, но постепенно исчезает после рождения, когда младенец начинает дышать своими легкими. Гемоглобин отвечает за перенос кислорода из легких во все органы нашего тела, причем у людей и некоторых обезьян существует его специальная плодная форма, помогающая извлечению кислорода из крови матери для питания растущего плода. В течение первого года жизни ребенка гемоглобин этого типа обычно полностью заменяется на взрослую форму. Однако у представителей одного семейства с Ямайки, которое я обследовал, фетальный гемоглобин продолжал вырабатываться и в зрелом возрасте. Эта особенность представляла большой интерес: научившись запускать выработку плодной формы у взрослых, мы могли бы значительно облегчить страдания людей, больных серповидно-клеточной анемией. Присутствие у них в крови хотя бы 20% фетального гемоглобина практически избавило бы их от мучительных приступов и остановило бы прогрессирующее разрушение органов.
Никогда не забуду тот день, когда очередной эксперимент показал G вместо С в определенной позиции «вверх» по одному из генов, отвечавших за отключение выработки фетального гемоглобина, — как оказалось, именно из-за этого отклонения программа, запускаемая в период эмбрионального развития, продолжала работать во взрослом состоянии. Я был счастлив, но устал до изнеможения — на поиски одной-единственной нужной мне «буквы» кода ДНК у меня ушло 1,5 года.
Три года спустя я был очень удивлен, узнав, что несколько ученых, оценивая перспективы науки, начали обсуждать возможность определения последовательности ДНК для всего генома человека, насчитывающего, по оценке, около 3 млрд комплементарных пар. Казалось немыслимым, чтобы это могло произойти при моей жизни.
Мы сравнительно мало знали о возможном содержании генома. Увидеть под микроскопом нуклеиновые основания какого-либо конкретного гена не представлялось возможным (для этого они слишком малы), охарактеризованы на тот момент были лишь несколько сотен генов, и разные оценки количества генов в геноме очень сильно друг от друга отличались. Даже точного определения гена не было (и сейчас нет), поскольку оказалось, что ген не всегда можно определять как цепочку, кодирующую определенный белок. Исследования ДНК позволили выявить так называемые интроны — сегменты генов, не содержащие информации о последовательности аминокислот белка. Из РНК интрон удаляется до начала считывания кода, и в зависимости от того, как соединятся друг с другом кодирующие участки, с одного и того же гена в определенных случаях может быть считано несколько разных (но родственных друг другу) белков. Далее, между генами обнаруживались длинные цепочки ДНК, которые, судя по всему, ничего не кодировали; некоторые исследователи даже называли их «мусорными», хотя, учитывая скудость наших знаний, требовалась немалая самоуверенность, чтобы объявить какую бы то ни было часть генома мусором.
Несмотря на все сомнения, гипотетическая ценность полного генома представлялась мне бесспорной. Ведь в этой огромной инструкции удалось бы найти полную «спецификацию» человеческого организма, а заодно и ключ к множеству заболеваний, природу которых мы плохо понимаем и которые не умеем эффективнно лечить. Для меня как врача возможность раскрыть эту самую могущественную на свете книгу по медицине была особенно притягательна. Поэтому я, со своим скромным на тот момент академическим статусом и без уверенности, что столь смелый план удастся осуществить на практике, принял участие в дискуссии, выступив за организацию программы по секвенированию генома — вскоре она получила известность как проект «Геном человека».
Через несколько лет мое желание видеть геном человека полностью расшифрованным еще усилилось. Я возглавил новую лабораторию, где под моим началом работали серьезные и трудолюбивые аспиранты и молодые научные сотрудники, и мы предприняли попытку раскрыть генетическую основу некоторых заболеваний, до тех пор не поддававшуюся определению. Первым из них был муковисцидоз, или кистозиый фиброз — самое распространенное тяжелое наследственное расстройство в странах Северной Европы. Болезнь обычно проявляется в младенчестве или в раннем детстве — ребенок мало прибавляет в весе и постоянно страдает от респираторных инфекций. Муковисцидоз можно опознать по повышенной концентрация ионов хлора в детском поте — наблюдательные матери замечают соленый привкус, целуя ребенка. Для болезни также характерны густые вязкие выделения в легких и поджелудочной железе. Но ни один из известных признаков болезни не давал даже косвенных указаний на назначение вызывавшего ее гена.
Впервые я столкнулся с муковисцидозом в конце 1970-х, когда проходил медицинскую практику в больнице. Еще в 1950-х гг. страдающие им дети редко доживали до десяти лет, однако к 70-м ситуация значительно изменилась к лучшему, так что многие больные вырастали, заканчивали колледж, шли на работу, вступали в брак. Но все это было достигнуто благодаря совершенствованию симптоматического лечения — созданию препаратов, заменяющих гормоны поджелудочной железы, новых антибиотиков, эффективных против легочных инфекций, специальных диет и методов физиотерапии. В том же, что касается борьбы с самим заболеванием, долгосрочная перспектива по-прежнему оставалась мрачной. Не понимая природы наследственного дефекта, медики блуждали на ощупь. Мы лишь знали, что где-то среди 3 млрд букв кода ДНК есть как минимум одна ошибочная, расположенная в уязвимом месте.
Трудности, связанные с нахождением такого тонкого отличия, представлялись почти непреодолимыми. Однако мы знали, что муковисцидоз наследуется по рецессивному типу. Поясню, что означает этот термин. Каждый наш ген существует в двух экземплярах: один получен от матери, другой от отца. (Исключение составляют гены, содержащиеся в хромосомах X и Y, которые у мужчин представлены только в одном экземпляре.) Рецессивная патология проявляется, только если она присутствует и в материнском, и в отцовском экземпляре гена, т. е. оба родителя являются ее носителями. Когда же в одном экземпляре гена патология есть, а в другом нет, болезнь никак не проявляется, так что ее носители, как правило, не подозревают о своем статусе. (Примерно каждый тридцатый житель Северной Европы — носитель муковисцидоза, и в семейной истории большинства из них болезнь не зафиксирована.)
Таким образом, вырисовывалась интересная задача по «выслеживанию» ДНК: не зная ничего о функции гена, ответственного за муковисцидоз, проанализировать другие наследственные признаки и поискать среди них сцепленные с заболеванием. Если в многодетных семьях, где некоторые дети больны, а некоторые нет, какой-то признак встречается только у больных детей, это означает, что участок, ответственный за данный признак, локализован неподалеку от интересующего нас гена. Мы не могли прочитать все 3 млрд букв генетического кода, но в наших силах было выхватить из темноты пару миллионов в одном определенном месте, пару в другом и проверить, нет ли здесь корреляции с муковисцидозом. Это требовалось проделывать сотни и сотни раз, но, так как геном представляет собой свзяанный набор информации, рано или поздно мы обязательно должны были выявить связь.