Выбрать главу

Кстати, это пример того, как благотворно для нас общение с малышом, как оно "вынуждает" нас (помогает нам) вспоминать об источниках и границах наших знаний, освобождаться от шаблонов и привычных заблуждений.

Ведь именно на этом свойстве - что количество шагов по горизонтали и по вертикали одинаково для всех путей - основано координатное представление векторов, то есть тот факт, что при сложении векторов их координаты тоже складываются. Четко помню, как когда-то меня, уже взрослого, поразило(как важно, став учителем или родителем, помнить о том, что поражает в детстве! ? ВЛ) это свойство векторов. На его основе можно сделать хорошую серию задач и с ее помощью даже дать намек на отрицательные числа (если допускать шаги назад, но подсчитывать их со знаком минус).

Как важно хотя бы на мгновение усомниться

Ну а пока на занятии мы старательно подсчитываем шаги: оказывается, каждая дорожка содержит ровно три шага направо и ровно два шага вверх.

Поэтому на следующем занятии мы пишем такие последовательности: ВВППП, ВПВПП, ВППВП и т.д. - в каждой три буквы П и две буквы В. По замыслу каждая буква П обозначает шаг направо, а буква В - шаг вверх (рисунок 5).

а б а а б

ППВПВ

а а а б б

ВПППВ

Рис.5

Надо было видеть то волнение, что охватило ребят, когда я показал им эту связь!

Все-таки показал, подсказал, а не только дождался, пока дети откроют связь сами. Без этого не обойтись. У А.Звонкина "показал" случается очень редко. Соотношение между "показал" и "дождался, пока дети откроют сами" определяется чувством меры педагога, индивидуальными особенностями учеников, темой обсуждения. Готовых рецептов здесь нет: общение с ребенком - дело творческое.

Чутье педагога, позволяющее ему успешно решать образовательные задачи, я назвал бы педагогическим вкусом. Формирование такого вкуса, на мой взгляд, главная задача педагогических вузов и колледжей. А так как учебные заведения этой задачи перед собой обычно не ставят, его формирование становится важнейшей задачей педагогического самообразования (в том числе и педагогического самообразования родителей).Они немедленно потребовали разрезать листок, на котором написаны наши пятибуквенные слова, и, отталкивая друг друга, стали прикладывать каждое слово к соответствующей дорожке. Я остаюсь сторонним наблюдателем, однако пытаюсь невзначай подкинуть еще одну мысль.

"Может быть, мы заодно и еще какие-нибудь решения найдем, - говорю я. Одиннадцатое, двенадцатое..." Один лишь Женя откликается на мои слова: "Нет, - говорит он. - Ведь здесь десять и там тоже". - "Но, может быть, они разные? Здесь одни десять решений, а там другие?" К этому моменту, однако, все бумажки уже разложены, и наши надежды не оправдались: обе группы по десять решений в точности соответствуют одна другой, или,как говорят математики, находятся во взаимно однозначном соответствии. Как тем не менее важно хотя бы на мгновение усомниться в результате, чтобы потом ощутить его как результат!

Озарение сопровождается радостным воплем

Сейчас, на волне энтузиазма, можно продвинуться чуточку дальше.

"А скажите, ребята, можно было обозначить шаги направо и вверх другими буквами? Не П и В, а другими?" - "Конечно! Какими хочешь можно". - "Ну какими, например?" - "Например, А и Б", - говорит Петя. "Или, например, твердый знак и мягкий знак", - это Дима. "Или, например, - говорю я, - шаг направо обозначить плюс, а шаг вверх - запятой". "О-о-о!" - хохочут мальчики. "Или, - продолжаю я бесстрастным тоном, - шаг направо обозначать черным кружком, а шаг вверх - белым". - "Как это?" - "А вот так".

а б а а б

Рис.6

l - l - m - l - m

Рис.7

Я беру один из рисунков, допустим такой (рисунок 6), и соответствующую ему подпись ППВПВ и рисую рядом картинку (рисунок 7). И в наступившей паузе паузе перед взрывом - еще успеваю соединить свои кружочки линиями, придав им окончательное сходство со второй задачей. Узнали! Тут ошибиться нельзя: озарение сопровождается радостным воплем и чуть ли не плясками. На столе все смешивается, и продолжать дальше становится решительно невозможно. Пора кончать занятие. Теперь можно отступить примерно на месяц, отвлечься, позаниматься другими задачами. Пусть идея уляжется, пустит корни. К тому же однотипные задачи могут скоро надоесть (курсив мой. ? ВЛ).

Как важно помнить об этом и не спешить закреплять успех! Закрепить успех тактическая задача. Стратегическая - сохранить у ребенка желание учиться, сберечь готовность мыслить самостоятельно, получая от этого интеллектуальное удовольствие.

Грандиозная идея, которая таится за скромным словечком "обозначить"

И вот - финиш. На столе пять коробок и два шарика: нужно класть эти два шарика в две коробки, оставляя остальные три коробки пустыми (рисунок 8). И чтоб не повторяться.

Рис.8.

Работа начинается бойко, но уже на четвертом или пятом шаге возникает ожесточенный спор, было уже такое решение или нет. Мальчики обращаются ко мне как к арбитру, но я делаю вид, что тоже не помню. Как быть?

Между прочим, далеко не каждый ребенок сообразит, что делать в такой ситуации. Нужно обозначить каким-то значком пустую коробку и каким-то другим - коробку с шариком, а все найденные решения записывать. Но за этим скромным словечком "обозначить" прячется грандиозная идея, родившаяся и выросшая вместе с человеческой цивилизацией. Достаточно вспомнить во многом еще загадочную историю возникновения письма, эволюции пиктограмм в иероглифы, иероглифов - в алфавитное письмо, и т. д. Сколько существует на свете математика, она всегда занималась изобретением и усовершенствованием систем обозначений - сначала для чисел, потом для алгебраических операций, потом для все более и более абстрактных сущностей. Уже в нашем веке учение о знаковых системах осознало себя в качестве самостоятельной науки семиотики.

(Недаром так недоумевают первоклассники, когда им говорят: "Обозначим слог прямоугольником, обозначим гласный звук красным кружочком, твердый согласный - черным кружочком, мягкий - синим кружочком; обозначим неизвестное число буквой х...". Это же так просто, так понятно - для нас с вами: обозначим - и все дела. А дети в тупике.)

Выразительный пример того, о чем говорилось в восьмой сноске ("Как часто учебные и жизненные задачи кажутся простыми нам только по недомыслию!")

Изобретаем письменность: рисунок - пиктограмма - иероглифї

На нашем кружке я всегда пытался не только решать отдельные задачи, но и формулировать, хотя бы для себя, сверхзадачи. Знакомство с семиотической идеей - одна из таких сверхзадач.

Мы не раз обсуждали то, что числа обозначаются цифрами, звуки речи буквами, а, скажем, музыкальные звуки - нотами. Вспомнили и другие системы знаков, например дорожные знаки. И всегда, когда было можно (и полезно), придумывали значки для разных объектов, с которыми оперировали. Так что эта идея для ребят уже не совсем новая.

Вот мальчики и предлагают "рисовать" решения. Поначалу они и в самом деле пытаются делать что-то вроде реалистических рисунков; я бы сказал: находятся на пиктографическом уровне. Но это трудно, и довольно скоро мы переходим на иероглифический уровень: рисунки становятся более абстрактными - теперь пустая коробка обозначается квадратом, а заполненная - квадратом с кружком внутри. Я предлагаю рисовать в последнем случае просто кружок. Очередное препятствие: дети не умеют рисовать аккуратно, и нарисованный ими круг не всегда легко отличить от квадрата. Тогда я делаю еще одно предложение: рисовать круг с крестом. Теперь изображенное выше решение выглядит так: (рисунок 9).

Рис.9.

"А почему с крестом?" - "А какая разница, как обозначать", - отвечаю я, пытаясь равнодушным пожиманием плеч еще раз намекнуть на относительную самостоятельность знака по отношению к обозначаемому объекту и его (в известных пределах) произвольность.

Минута педагогического триумфа: дети приходят к общематематической идее!

А между тем получившаяся задача в одном отношении сложнее предыдущих. Ведь теперь каждое новое решение нужно сравнивать не с предшествующими решениями, а с их условными обозначениями.

Педагогический успех - награда тому, кто постоянно внимателен и чуток к ребенку. Не знаю, что помогает А.Звонкину так тонко проникать в детскую то ли прекрасная память и самоанализ, то ли способность к перевоплощению в ребенка, то ли интуиция, то ли знакомство с трудами психологов (каждый это делает по- своему). Но именно зоркость к детским интеллектуальным трудностям позволяет взрослому успешно строить радостное и взаимно развивающее общение с детьми.