Мы пользовались стандартным приемом: двумя веревочными кругами, в пересечении которых помещали общий предмет.
Всегда ли мыслить нестандартно означает мыслить творчески?
Дима все время представлял собой проблему. «Это хоть и дядя, но похож на тетю», — говорил он про старика с огромной бородой и помещал его в общество женщин. Про автомобильную шину он долго доказывал нам всем, что это тоже одежда, так как ее можно носить на поясе. Когда же никто с ним не согласился, он сказал: «Все равно это одежда, потому что ее надевают на автомобиль».
Кто-нибудь скажет: вот, мальчик умеет мыслить творчески, нестандартно. Насчет «нестандартно» согласен, но вот творчески… Человек по-настоящему творческий умеет предложить неожиданное, нестандартное решение и при этом остаться в рамках задачи. У Димы пока присутствует только первый компонент, а вот остаться в рамках задачи или хотя бы вблизи от них он не умеет. Надо как-то суметь, не подавив одно, развить другое. А как этого добиться, я не знаю.
Детям нужно полноценное интеллектуально-эстетическое удовольствие
Наша следующая (и последняя на этот раз) задача — из области геометрии. Я извлекаю цветную детскую мозаику, купленную в магазине «Лейпциг» (увы, в одном экземпляре: в момент покупки я еще не помышлял о кружке).
Мозаика представляет собой прямоугольное поле с отверстиями. В них вставляются одинаковые по форме фишечки пяти разных цветов (рисунок 7), цвет фишек очень яркий, насыщенный, приятный для глаз. Наша задача — про симметрию. Сначала я выкладываю ось — одноцветную вертикальную линию, проходящую посередине поля. Я называю эту линию «зеркалом»; в это зеркало сейчас будут смотреться разные фигурки. Я строю с одной стороны от оси разнообразные небольшие фигурки, а мальчики должны построить симметричные им фигурки с другой стороны. Я варьирую все, что можно — цвет, размер, расположение фигур (на следующих занятиях будет меняться также и расположение оси: сначала она станет горизонтальной, затем пойдет по диагонали). С помощью настоящего зеркала мы проверяем наши решения: оказывается ли за зеркалом то же самое, что мы видим в зеркале? Мальчики справляются с задачей на удивление легко, почти не допускают ошибок. Не могу понять, почему эта тема (осевая симметрия) вызывает трудности в шестом классе! Мы впоследствии посвятили ей много занятий. Симметрия в самом деле очень богатая тема.
Мы рассматривали картинки с симметричными узорами из книг по популярной математике. Мы рисовали симметричные фигуры разноцветными фломастерами на клетчатой бумаге; делали симметричные кляксы, складывая лист бумаги пополам; вырезали новогодние снежинки; находили ошибки в симметричных рисунках, в которых были специально сделаны кое-где нарушения, отклонения от точной симметрии; среди восьми карточек находили четыре симметричные и четыре несимметричные фигуры; у одной фигуры находили все возможные оси симметрии. Другие виды перемещений — центральная симметрия, поворот, параллельный перенос — оказываются для детей несколько более сложными, а вот осевая симметрия буквально идет «на ура».
А мозаика стала вскоре моим любимейшим инструментом. Это не игра, а настоящий клад всевозможных задач по геометрии, комбинаторике, логике, угадыванию закономерностей. А однажды она мне преподала один незабываемый урок на тему о том, что для детей важнее. Дело было так. Мальчики с удовольствием ходили на занятия, а иногда даже в ответ на мои слова «урок окончен» просили позаниматься еще. Я, конечно, гордился собой, пока вдруг не заметил, что их просьбы продолжить занятие следуют только тогда, когда мы занимаемся с мозаикой.
Я решил проверить свою догадку. Следующее занятие было без мозаики. Так оно и есть: говорю «урок окончен» — дети спокойно встают и расходятся.
Меня охватили глубочайшие сомнения. Мозаика в самом деле очень красива, нет ничего удивительного в том, что ребятам нравится с нею играть. А моя математика, думал я, здесь ни при чем; я ее протаскиваю как обузу, как никому не нужный довесок, как нагрузку к интересной игрушке! И вот в следующий раз я устраиваю решающую проверку. Мы опять занимаемся с мозаикой; опять мальчики не хотят заканчивать занятие. И тогда я говорю: «Нет, давайте мы урок все-таки закончим, а с мозаикой я вам разрешаю поиграть просто так». В ответ следует единодушный вопль возмущения, и Петя резюмирует общую точку зрения в решительных словах: «Э, не-ет! Мы хотим задачу!!» Вот так я понял, где лежит истина.
Детям нужно полноценное интеллектуально-эстетическое удовольствие. Если одна из двух половин отсутствует, полноценность теряется, а с ней и ощущение праздника.
Новогодняя елка без игрушек имеет в глазах детей так же мало притягательности, как игрушки без елки. Только когда они соединяются вместе, наступает праздник. Я надеюсь, что в будущем, через годы, когда мои ребята будут заниматься более абстрактной, «умственной» математикой, они будут получать от этого больше удовольствия, чем их сверстники. Ведь возникающие у них в уме абстрактные образы и понятия будут где-то на дне сознания эмоционально сливаться, окрашиваться воспоминаниями о разноцветных радостях детства.
Вот и сейчас — мы уже прошли два круга, то есть каждый из ребят решил по две задачи на симметрию, пора бы уже кончать, но мальчики не унимаются, хотят еще. Мне кажется, что они уже устали. И я нахожу неожиданный выход: «Давайте вы будете задавать мне задачи, а я буду их решать». Дети в восторге! С новым пылом они строят фигурки, а я — им симметричные. Работаю старательно.
Ошибки как педагогический инструмент
Вдруг в голову приходит новая идея: я начинаю нарочно делать ошибки
Идея использования преднамеренных ошибок прочно вошла в теорию и практику развивающего образования (система Д.Б.Эльконина-В.В.Давыдова). Там такие ошибки получили название «ловушки».
Петя первый это замечает; счастью детей нет конца. К мальчикам как будто пришло второе дыхание. Теперь они с горящими глазами, не отрываясь, следят за моей рукой, встречая каждую новую ошибку воинственными дикарскими кличами.
Но пора все же закругляться. Я отодвигаю мозаику, благодарю всех и объявляю занятие оконченным. «А когда же фокусы будут?» — вдруг вспоминает Андрюша. «Ну как же, Андрюша! Ведь ты сам и показывал фокусы! Пуговиц было не видно, они были спрятаны у меня в кулаке, а ты сумел их сосчитать». Сумел, правда, не он, а Женя, но Андрюша, видимо, об этом забыл, потому что выглядит вполне удовлетворенным.
Очень интересное наблюдение, которое непременно нужно учитывать, занимаясь с дошкольниками и младшими школьниками: когда в группе малышей кто-нибудь справляется с задачей, которую решали все вместе, каждый ребенок ощущает себя решившим задачу!
Мы встаем. Я смотрю на часы: неужели прошло всего двадцать пять минут? Сейчас дети разойдутся, а я останусь приводить в порядок свои мысли, придумывать новые задачи, новые подходы, приемы. И еще — клеить, вырезать, раскрашивать. Одним словом, готовить то, что в педагогике зовется скучным сливом «дидактический материал». Ведь до следующего занятия — всего одна неделя.
Теория вероятностей для выращивания вундеркиндов?
Когда я решался выступить с этими заметками перед широкой аудиторией, я больше всего боялся, что кто-нибудь примет меня за очередного пророка, предлагающего еще один способ выращивания вундеркиндов. Некоторый повод для такого мнения дают темы наших математических занятий. Их «взрослые» названия звучат порой удручающе научно: теория вероятностей, программирование, топология, комбинаторика…